JAEA-Review 2013-040

研究炉(JRR-3 及び JRR-4)利用における研究成果集 (平成21年度)

Activity Report on the Utilization of Research Reactors (JRR-3 and JRR-4) (Japanese Fiscal Year, 2009)

> (編)研究炉利用課 (Ed.) Research Reactor Utilization Section

> > 東海研究開発センター 原子力科学研究所 研究炉加速器管理部

Department of Research Reactor and Tandem Accelerator Nuclear Science Research Institute Tokai Research and Development Center February 2014

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency. 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2014

研究炉 (JRR-3 及び JRR-4) 利用における研究成果集(平成21年度)

日本原子力研究開発機構 東海研究開発センター 原子力科学研究所

研究炉加速器管理部

(編)研究炉利用課

(2013年9月24日受理)

JRR-3 は、中性子散乱、即発ガンマ線分析、中性子ラジオグラフィなどの実験利用、 及び、放射化分析、原子炉燃料材料、ラジオアイソトープ製造、フィッショントラック 年代測定の照射利用など、様々な目的に利用されている。

JRR-4 については、医療照射 (Boron Neutron Capture Therapy: BNCT)、即発ガンマ 線分析、放射線測定器の感度試験、原子炉研修運転実習等の実験利用、及び、放射化分 析、ラジオアイソトープ製造、フィッショントラック年代測定のための照射利用など、 様々な目的に利用されている。

平成 21 年度、研究炉 JRR-3 は 7 サイクルの運転(1 サイクル: 26 日連続運転)、JRR-4 については、6 サイクルの施設共用運転(24 日)を行なった。

本報告書は、平成21年度に実施した施設利用成果の提出を研究炉の利用者(原子力 機構外を含む)から受け、中性子散乱11分野(構造、磁性、超伝導など)、中性子ラジ オグラフィ、即発ガンマ線分析、放射化分析、ラジオアイソトープ製造、その他の分野 別についてその研究成果を取りまとめたものである。

原子力科学研究所:〒319-1195 茨城県那珂郡東海村白方白根 2-4

JAEA-Review 2013-040

Activity Report on the Utilization of Research Reactors (JRR-3 and JRR-4) (Japanese Fiscal Year, 2009)

(Ed.) Research Reactor Utilization Section

Department of Research Reactor and Tandem Accelerator Nuclear Science Research Institute Tokai Research and Development Center Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received September 24, 2013)

JRR-3 is used for the purposes below;

- Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography
- Irradiation for activation analyses, radioisotope (RI) productions, fission tracks
- Irradiation test of reactor materials etc

JRR-4 is used for the purposes below;

- Medical irradiation (Boron Neutron Capture Therapy : BNCT)
- Prompt gamma-ray analyses
- Sensitivity measurement of radiation detectors
- Experiment in the nuclear reactor training
- Practice of Reactor operation
- Irradiation for activation analyses, RI productions, fission tracks etc.

In the fiscal year 2009, The research reactor JRR-3 was operated 7 cycles (cycle operation : 26days/cycle) for utilization sharing of the facility. And JRR-4 was operated 6 cycles (daily operation : 24 days).

The volume contains 138 activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, prompt gamma-ray analyses, neutron activation analyses, RI productions, and others submitted by the users in JAEA and from other organizations.

Keywords: JRR-3, JRR-4, Research Reactor, Neutron Scattering, Neutron Radiography, Neutron Activation Analysis, Neutron Beam, Irradiation

目	次
Ħ	1八

はじめに 1
研究成果一覧
1. 中性子散乱 ········· 15
1) 構造・励磁 ······ 15
2) 磁 性
3) 強相関電子系 ····· 87
 非晶質·液体 ······ 109
5) 高分子 115
6) 生物
7) 基礎物理学·中性子光学 ····· 141
8)装 置
9) 超伝導現象 ······ 153
10) 残留応力 ••••••••••••••••••••••••••••••••••••
11)その他 ・・・・・・・・・ 171
2. 中性子ラジオグラフィ ・・・・・ 175
3. 即発ガンマ線分析 ・・・・・ 191
4. 放射化分析 ······ 221
5. ラジオアイソトープ製造 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 275
6. その他 ・・・・・ 281
おわりに
謝辞 ······ 304
付録

Contents

Preface	1
Research Reports	3
1. Neutron Scattering ·····	15
1) Structure Excitation ·····	15
2) Magnetism · · · · · · · · · · · · · · · · · · ·	51
3) Strongly Correlated Electron Systems	87
4) Amorphous • Liquid ••••••••••••••••••••••••••••••••••••	09
5) Polymer 1	15
6) Biology 1	35
7) Fundamental Physics • Neutron Optics • • • • • • • • • • • • • • • • • • •	41
8) Instrument · · · · · · · · · · · · · · · · · · ·	45
9) Superconductivity 1	53
10) Residual Stress 1	57
11) Others	71
2. Neutron Radiography · · · · · · · · · · · · · · · · · · ·	75
3. Prompt Gamma-ray Analyses 1	91
4. Neutron Activation Analyses 22	21
5. Production of Radio Isotopes · · · · · · · · · · · · · · · · · · ·	75
6. Others	81
Conclusion ······ 3	03
Acknowledgments	04
Appendixes	05

JAEA-Review 2013-040

はじめに

平成21年度には、JRR-3において7サイクルの共同利用運転、JRR-4において6サイクルの共同利用運転が行われ、これに伴いさまざまな利用が行われた。

本報告書は、利用者(原子力機構外利用者を含む)から当該利用の成果の提出を受け、 取りまとめたものである。

提出して頂いた成果の件数は、中性子散乱112件、中性子ラジオグラフィ5件、即発 ガンマ線分析9件、放射化分析10件、ラジオアイソトープ製造1件、その他1件で合計 138件であった。なお、本報告書の一部は、貴重な研究成果を公開する機会を広げるた め、下記報告書の中から転載させて頂いたものである。

最後に、原稿を提出して頂いた利用者の皆様のご協力に感謝するとともに、今後も研究 炉が有効に利用され、種々の研究がさらに進展されることを期待します。

研究炉利用課長

笹島 文雄

1)標 題	: ACTIVITY	REPORT	ON NEU	TRON	SCATTERING
-------	------------	--------	--------	------	------------

RESEARCH issued by ISSP-NSL, University of Tokyo, Vol.17 (東京大学物性研究所発行)

- 編 者 :東京大学物性研究所
- 発行年:2010年
- 2)標 題 : 原子力機構施設利用総合共同研究成果報告集(平成21年度)
 - 編 者 : 東京大学大学院工学系研究科原子力専攻共同利用管理本部
 - 発行年:2010年

This is a blank page.

研究成果一覧

Research Reports

This is a blank page.

No.	「Title」	Page
	Neutron Scattering - Structure - Excitation -	
1-1-1	Diffuse Scattering from Lithium Ion Conductors Li _{1+x} Ge _{2-x} Al _x (PO ₄) ₃	17
	Y. Fujita, H. Takahashi, T. Sakuma, N. Igawa	
1-1-2	Structure and Properties of Ferroelectric Water Ice	18
	H. Fukazawa, M. Arakawa, H. Kagi	
1-1-3	Investigation of coupling between pseudo-spin and phonon in relaxor PMN34%PT	19
	M. Matsuura, K. Hirota	
1-1-4	Phase Transition Mechanism of KDP Investigated by Structure Refinement	20
	H. Mashiyama, T. Miyoshi, T. Asahi, H. Kimura, Y. Noda	
1-1-5	Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at	
	high temperatures	21
	I. Kagomiya, I. Kinoshita, K. Kakimoto, H. Ohsato	
1-1-6	Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at	00
	high temperatures	22
1 1 7	1. Kagomiya, 1. Kinoshita, K. Kakimoto, H. Ohsato	
- -/	Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at	22
	Ingn temperatures	23
1_1_0	1. Kagomiya, 1. Kinoshita, K. Kakimoto, H. Onsato	
1-1-0	Oxygen delect structure of oxygen fonic and electronic mixed conductive oxides at	24
	Ingin temperatures I Kagomiya T Kinoshita K Kakimoto H Ohsato	24
1_1_0	1. Kagoiniya, 1. Kinosinta, K. Kakinoto, 11. Olisato	
	bigh tomporatures	25
	I Kagomiya T Kinoshita K Kakimoto H Ohsato	20
1-1-10	Neutron Diffraction Study of KH. (SeO.).	
	F Magome M Machida R Kiyanagi H Kimura V Noda	26
1-1-11	Oxide and nitride ion distribution effect in crystal structure of new oxynitride superconductor	
	S Kikkawa Y Masubuchi T Motohashi M Wakeshima Y Oohashi	27
1-1-12	Structure and phase transitions in a lead-based inorganic-organic perovskites C5H10NH2PbI3	
	M. Takahashi. T. Kawasaki. M. Nakatsuma. Y. Noda	28
1-1-13	Atomic and magnetic structures in Pt-3.6 at.% Mn allov	
	M. Takahashi, K. Ohshima, H. Kato, Y. Noda	29
1-1-14	Nuclear diffuse scattering in triangular lattice system LuFeCoO4 with relaxor-like behavior	
	M. Soda, T. Aoyama, Y. Wakabayashi, K. Hirota	30
1-1-15	Crystal Structure Analysis of Ruddlesden-Popper Type Sr3Ti1.8Co0.2O7	0.1
	K. Omoto, H. Yamada, N. Sirikanda, T. Ishihara, M. Yashima	31
1-1-16	Crystal Structure of Exhaust Gas Catalyst Ceria-Zirconia Nanoparticles CexZr1-xO2	22
	D. Sato, M. Yashima, T. Wakita	32
1-1-17	Crystal structure analysis of the cubic perovskite-type La0.4Ba0.6CoO3-d	33
	Y. Chen, M. Yashima, T. Ohta, K. Ohoyama	- 33
1-1-18	Structure analysis of Imma perovskite-type oxynitride LaTiO2N	34
	M. Saito, M. Yashima, H. Nakano, T. Takata, K. Ogisu, K. Domen	
1-1-19	Structure Analysis of Hydroxyapatite by Neutron Powder Diffraction	35
	Y. Yonehara, M. Yashima, H. Fujimori	
1-1-20	Crystal Structure, Diffusion Path and Oxygen Permeability of a Pr2NiO4-Based	
	Mixed Conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+delta	36
	M. Yashima, S. Nuansaeng, T. Ishihara	
1-1-21	Study on the electric field-induced lattice deformation in nanocrystalline CuO	37
	M. Hagihala, X. G. Zheng, T. J. Sato, N. Matsuura	
1-1-22	A structure study of the double perovskite oxide Ba2NdSn0.3Sb0.7O5.85	38
	H. Kato, M. Yashima, P. J. Saines, B. J. Kennedy	
1-1-23	Crystal structure analysis of the perovskite-type silver niobate AgNbO3	39
1 1 04	S. Matsuyama, M. Yashima, H. Taniguchi, T. Taniyama, M. Itoh	
1-1-24	INCUTOR DIFFRCTION STUDY OF SNU2-CEU2-SDUX SYSTEM	40
	K. INOIHUIA, H. KABEYAMA, C. IVIIIABOSHI, Y. KAWADATA, I. MAEKAWA, K. KANDA	1

1-1-25	Effect of Transition-Metal Substitution on Crystal Structure and Ferroelectric	
	Property of Bi4Ti3O12-Based Oxide	42
	Y. Idemoto, N. Kitamura, T. Iiyama	
1-1-26	Acoustic phonon softening in tetragonal BiVO ₄	12
	I. Tomeno, N. Sato, Y. Sato, K. Oka, Y. Tsunoda	43
1-1-27	Dependence of Crystal Structure and Protonic Conduction on Compositions in	
	Gallate-Based High Temperature Protonic Conductors with Layered Structures	44
	Y. Idemoto, N. Kitamurra	
1-1-28	Direct Observation of Adsorbed Layer on Metal Surface Using Neutron Reflectometry	16
	T. Hirayama, T. Torii, T. Matsuoka, K. Inoue, M. Hino, D. Yamazaki	40
1-1-29	Neutron Powder Diffraction Study of Lithium Battery Electrode Materials with	
	Tunnel Structure	47
	N. Kijima, J. Akimoto, K. Kataoka	
1-1-30	Fractal geometry of porous silica studied by SANS experiment	10
	H. Mayama	40
1-1-31	Analysis of Hydrogen Molecules Chemisorbed on Cu Ions Confined in Solid Nanospace	10
	T. Ohkubo, K. Takahara, A. Itadani, O. Yamamuro, Y. Kuroda	49

No.	[Title]	Page
	Neutron Scattering - Magnetism -	
1-2-1	Neutron Single-Crystal Diffraction Studies on HoB ₂ C ₂ under High-Pressure	50
	H. Yamauchi, T. Osakabe, E. Matsuoka, H. Onodera	53
1-2-2	Influence of Al Substitution on Magnetic Correlation of the Two-Dimensional	
	Triangular Lattice Antiferromagnet CuCrO ₂	54
	R. Kajimoto, M. Matsuda, K. Uto, T. Okuda	
1-2-3	Pressure-Temperature Phase Diagram of Filled Skutterudite PrFe ₄ P ₁₂	55
	T. Osakabe, H. Yamauchi, K. Kuwahara, K. Iwasa, Y. Aoki, H. Sato, M. Kohgi	55
1-2-4	Spin Waves in MnP	FC
	S. Yano, M. Nishi, M. Matsuura, K. Hirota, J. Akimitsu	50
1-2-5	Antiferromagnetic fluctuations in $Fe(Se_{1-x}Te_x)_{0.92}(x = 0.75, 1)$	57
	S. Iikubo, M. Fujita, S. Niitaka, H. Takagi	57
1-2-6	Magnetic structure in FeTe _{0.92}	59
	S. Iikubo, M. Fujita, S. Niitaka, H. Takagi	50
1-2-7	Component dependence of magnetic moment in MnRh alloy	50
	Y. Matsuoka, A. Takasaki	39
1-2-8	Origin of Ferroelectricity induced by Proper-screw Magnetic Structure in	
	Multiferroic Material CuCrO2	60
	M. Soda, K. Kimura, T. Kimura, M. Matsuura, K. Hirota	
1-2-9	Spiral-plane Flop and Rearrangement of Magnetic Domain in Multiferroic Material	
	CuCrO2	62
	M. Soda, K. Kimura, T. Kimura, K. Hirota	
1-2-10	Neutron diffraction study on antiferromagnetism of alkali-metal clusters in sodalite	64
	T. Nakano, A. Hanazawa, M. Matsuura, K. Hirota, Y. Nozue	04
1-2-11	Non-magnetic-ion substitution in geometrically frustrated systems	
	M2(OD)3X[M=Co,Fe,Ni,Mn; X=Cl,Br]	65
	X. G. Zheng, M. Hagihala, M. Fujihala	
1-2-12	Low temperature magnetism and spin fluctuation in atacamite-type Ni2(OD)3Cl	66
	M. Hagihala, M. Fujihala, X. G. Zheng, Y. Oohara	00
1-2-13	Inelastic neutron scattering study on crednerite CuMnO ₂	67
	K. Hayashi, R. Fukatsu, T. Nozaki, T. Kajitani	07
1-2-14	Long-Time Variation of Magnetic Structure in PrCo2Si2	68
	K. Motoya, T. Moyoshi, T. Shigeoka	
1-2-15	High energy-resolution inelastic neutron scattering study of the Cu ₃ molecular magnet	69
	K. Iida, T. J Sato	
1-2-16	Substitutioin Effect of Ga for Mn on Magnetic and Dielectric Properties of	
	Multiferroic YMn ₂ O ₅	70
	H. Kimura, Y. Sakamoto, M. Fukunaga, Y. Noda, N. Abe, T. Arima, H. Hiraka	
1-2-17	Reinvestigation of the magnetic structure in L10-type MnPt powder samples	71
	K. Ogita, I. Tomeno, Y. Tsunoda	
1-2-18	High Temperature Multiferroic State in RBaCuFeO5(R=Y, Lu and Tm)	72
	Y. Yasui, Y. Kawamura, S. Tatematsu, M. Sato, K. Kakurai	
1-2-19	Neutron diffraction study in triangular spin tube CsCrF4	74
1 0 00	T. Masuda, H. Manaka	
1-2-20	Spin excitations in pyrochlore lattice	75
4 0 04	K. Tomiyasu, M. Matsuda, H. Ueda, A. Yamamoto	
1-2-21	Ubservations of dynamical spin molecules in geometrically frustrated spinel magnets	76
1 0 00	K. Tomiyasu, Y. Kousaka, T. Yokobori, A. Tominaga, S. Hara, S. Ikeda	
1-2-22	Magnetic excitation in triangular spin tube CsCrF4	77
1_0_00	1. Masuda, H. Manaka	
1-2-23	Anisotropic magnetic correlations and a magnetic field annealing effect in a helical	70
	magnet Erini2Ge2	/8
1_0_04	Y. Tabata, M. OKUE, T. Yamazaki, T. Waki, H. Nakamura Madulated Magnetic Structure in the Days earth Clatherate Fr. Co. Co.	
1-2-24	TY OUTRALE IN TAGENET CONTRACT THE CARE-CARTER CHAINFALE EUgGa ₁₆ Ge ₃₀	79
	1. Ommaru, U. H. Lee, 1. Takadatake	1

1-2-25	Multipolar Transition in a Trigonal Pr ₄ Ni ₃ Pb ₄ with Non-Kramers Ground State	00
	T. Onimaru, A. Ishida, T. J. Sato, T. Takabatake	80
1-2-26	Investigation of spin molecule in geometrically frustarted spin system NiS ₂	01
	M. Matsuura	01
1-2-27	Spin dynamics in novel Rare-earth based single-molecule magnets	02
	T. Kajiwara, M. Nakano, M. Kofu, O. Yamamuro	02
1-2-28	Spin dynamics in multiferroics Ba ₂ Mg ₂ Fe ₁₂ O ₂₂	83
	D. Okuyama, N. Kida, S. Ishiwata, Y. Taguchi, K. Iwasa, T. Arima, Y. Tokura	03
1-2-29	High-energy excitations in BaFe2As2	85
	K. Matan, T. J. Sato	00

No.	「Title」	Page
Neutron Scattering - Strongly Correlated Electron Systems-		
1-3-1	Magnetic Correlations in the Pseudogap Phase of Optimally Doped Bi2212	00
	M. Matsuura, Y. Yoshida, H. Eisaki, N. Kaneko, CH. Lee, K. Hirota	09
1-3-2	Study of spin fluctuations in electron-doped antiferromagnetic phase of	
	$Pr_{1,4-x}La_{0.6}Ce_xCeO_4$	90
	M. Fujita, M. Nakagawa, K. Yamada	
1-3-3	Uniaxial pressure induced magnetic phase of $CuFe_{1-x}Ga_xO_2$ (x = 0.018)	
	T. Nakajima, S. Mitsuda, K. Takahashi, K. Yoshitomi, R. Kiyanagi, Y. Noda, N. Aso,	91
	Y. Uwatoko	
1-3-4	Hole-doping dependence of spin excitation in Bi2201 high-T _c cuprate system	02
	M. Fujita, M. Enoki, Y. Ai, S. Iikubo, K. Yamada	92
1-3-5	Inelastic Magnetic Scattering of Fe oxypnictide superconductors	03
	S. Tatematsu, T. Moyoshi, Y. Yasui, M. Sato, K. Kakurai	33
1-3-6	Investigation of 4f electronic state and atomic vibration in rare-earth based	
	compounds by neutron scattering	95
	K. Iwasa, K. Saito, R. Igarashi, H. Kobayashi	
1-3-7	Crystal structure and Magnetic Property of Pr _x Fe ₄ Sb ₁₂	07
	K. Iwasa, T. Orihara, Y. Murkami, K. Kuwahara, H. Sugawara	97
1-3-8	Magnetic Excitations of CeRh1-xCoxIn5	98
	M. Yokoyama, Y. Ikeda, D. Nishikawa, H. Amitsuka, K. Tenya	50
1-3-9	Phonon dynamics of iron-based superconductors	00
	C. H. Lee, K. Kihou, K. Horigane, H. Eisaki, A. Iyo, M. Braden, K. Yamada	99
1-3-10	Relationship between crystal structure and superconductivity in iron-based superconductors	100
	C. H. Lee, K. Kihou, H. Eisaki, A. Iyo, M. Braden, K. Yamada	100
1-3-11	Substituting dependence of the ordered moment in BaFe2(As,P)2	101
	S. Ibuka, K. Matan, T. J. Sato	101
1-3-12	Competition or coexistence of multiple order parameters in the heavy fermion	
	antiferromagnet CeRh _{1-x} Ir _x In ₅	102
	K. Deguchi, N. Aso, K. Wakishima, Y. Ishikawa, Y. Maeda, N. K. Sato, H. Yoshizawa	
1-3-13	Pressure-induced release of magnetic frustration in a quasi-kagome lattice YbAgGe	104
	K. Umeo, H. Kubo, T. Onimaru, K. Katoh, N. Aso, T. Takabatake	104
1-3-14	Magnetic structure of Nd1/3Sr5/3MnO4	105
	Y. Oohara, M. Kubota, H. Kuwahara	105
1-3-15	Competition or coexistence of multiple order parameters in the heavy fermion	
	antiferromagnet CeRh _{1-x} Ir _x In ₅	106
	K. Deguchi, N. Aso, K. Wakishima, Y. Ishikawa, Y. Maeda, N. K. Sato, H. Yoshizawa	
1-3-16	Pressure induced superconductivity in SrFe2As2	108
	K. Munakata, S. Ibuka, H. Ishida, K. Matan, K. Ohgushi, M. Nishi, Y. Uwatoko, T. J. Sato	100

No.	Γ Title J	Page
	Neutron Scattering -Amorphous • Liquid-	
1-4-1	Mixing State of Benzene Solutions of Imidazolium-based Ionic Liquid, C12mim+TFSA-	111
	T. Shimomura, T. Takamuku	
1-4-2	Intermolecular Structure between Urea Molecule and Metal Ions in Concentrated	
	Aqueous Solutions	112
	Y. Kameda, T. Miyazaki, S. Onodera, Y. Amo, T. Usuki	
1-4-3	Diffusional dynamics of water molecules in lower alcohol aqueous solutions at low	
	temperature.	113
	K. Maruyama, M. Nakada, T. Kikuchi, O. Yamamuro	
1-4-4	In-situ neutron quasi-elastic scattering of meso-porous silica modified by sulfo group	11/
	T. Otomo, S. Takata, K. Kamazawa, S. Fujita, M. Kofu, O. Yamamuro	114

No.	「Title」	Page
Neutron Scattering - Polymer -		
1-5-1	Combined SANS, WANS, and Weighing Studies of Microbial Cellulose in Drying Process Y. Zhao, S. Koizumi, T. Hashimoto	117
1-5-2	Distribution and Accumulation of Water in the Polymer Electrolyte Fuel Cell	
	Performed by Small-Angle Neutron Scattering	118
	A. Putra, D. Yamaguchi, S. Koizumi	
1-5-3	Characterization of Swollen Structure of High-density Polyelectrolyte Brushes in	
	Salt Solution by Neutron Reflectivity	119
	Y. Terayama, M. Kobayashi, A. Takahara	
1-5-4	Detailed analysis for shish-kebab structural formation process with small angle	
	neutron scattering	120
	G. Matsuba, K. Kawashima, K. Nishida, T. Kanaya	
1-5-5	Dynamics of nano-meter-sized domains on a vesicle	122
	M. Imai, Y. Sakuma	122
1-5-6	Vesicle structures below the Krafft temperature in a surfactant solution	
	-Hyperswollen lamellar phase coexisting with vesicles-	123
	Y. Kawabata, T. Shinoda, T. Kato	
1-5-7	Order-Order Transition of Block Copolymers Swollen with Supercritical Carbon Dioxide	124
	H. Yokoyama, M. Ito, K. Mayumi, K. Ito, M. Shibayama, H. Endo, T. Suzuki	121
1-5-8	Exclusive volume effect on uni-lamellar vesicles by addition of polymers	125
	N. L. Yamada	
1-5-9	States of Poly(methyl methacrylate) Monolayers Supported on Substrates in Non-solvents	127
	H. Atarashi, K. Hori, N. Kai, A. Horinouchi, Y. Fujii, M. Hino, K. Tanaka	/
1-5-10	Aggregation States and Dynamics of Poly(methyl methacrylate) at Interfaces with Non-solvents	128
	H. Atarashi, H. Endo, M. Shibayama, K. Tanaka	
1-5-11	Nano-sized clusters in the mixture of D2O/H2O in the presence of 3-methylpyridine	129
	H. Seto, K. Sadakane	
1-5-12	Pressure induced disorder/lamellar phase transition in the mixture of water/organic	
	solvent/salt	130
	H. Seto, K. Sadakane	
1-5-13	LCST Phase Behavior of Poly(benzyl methacrylate) in Room-temperature Ionic	
	Liquid studied by SANS	132
	M. Shibayama, K. Fujii, T. Matsunaga, T. Ueki, M. Watanabe	
1-5-14	Dynamic and Static Structure Analyses of Super-homogeneous Tetra-PEG gel	133
	T. Sakaı, T. Matsunaga, M. Shibayama, U. Chung	
1-5-15	Chain conformation of highly-purified ring polymer in bulk and the blending effect	
	of linaer polymers	134
	A. Takano, Y. Ohta, Y. Matsushita	1

No.	[Title]	Page
	Neutron Scattering - Biology -	
1-6-1	Neutron Diffraction Study of Porcine Pancreatic Elastase under Active Conditions	127
	T. Tamada, T. Kinoshita, T. Ohhara, K. Kurihara, T. Tada, R. Kuroki	137
1-6-2	Dynamic of Water Molecule in a Crowding Environment Studied by Neutron	
	Quasi-Elastic Scattering	138
	H. Nakagawa	
1-6-3	Determination of Lipid Transfer Activity of Phospholipid Transfer Proteins by	
	Time-Resolved SANS	139
	M. Nakano, M. Fukuda, Y. Wada, M. Kaihara, H. Endo	
1-6-4	Structual Investigation on Proteasome α7 ring in solution	140
	M. Sugiyama, E. Kurimoto, T. Fukunaga, K. Kato	140

No.	「Title」	Page
	Neutron Scattering - Fundamental Physics - Neutron Optics -	
1-7-1	Development of Jamin-Type Cold Neutron Interferometer with Complete Path Separation Y. Seki, M. Kitaguchi, M. Hino, H. Funahashi, Y. Otake, K. Taketani, H. M. Shimizu	143
1-7-2	Development of cold neutron interferometer for pulsed source M. Kitaguchi, M. Hino, H. Funahashi, Y. Seki, K. Taketani, H. M. Shimizu	144

No.	[Title]	Page
	Neutron Scattering - Instrument -	
1-8-1	Influence of Interfacial Roughness Correlation on Reflectivity of Neutron Multilayer Mirrors	147
	R. Maruyama, D. Yamazaki, T. Ebisawa, K. Soyama	147
1-8-2	Development of a High-Spatial-Resolution Neutron Detector with	
	Wavelength-Shifting Fibre Read Out	149
	T. Nakamura, M. Katagiri, K. Toh, K. Sakasai, S. Soyama	
1-8-3	Visualization of Electric Current by Neutron Spin Phase Contrast Imaging	150
	S. Tasaki, Y. Iwata, T. Tanaka, Y. Abe, M. Hino	150
1-8-4	Development of MIEZE spectrometer for pulsed neutrons	151
	M. Kitaguchi, M. Hino, Y. Kawabata, S. Tasaki, R. Maruyama, T. Ebisawa	131

No.	Γ Title 」	Page
	Neutron Scattering - Superconductivity -	
1-9-1	Structural Analysis on Iron-Based Superconductor Pr1111 System with Oxygen	
	Deficiency and Flourine Substitution	155
	K. Kodama, M. Ishikado, F. Esaka, A. Iyo, H. Eisaki, S. Shamoto	
1-9-2	Doping Dependence of Magnetic Excitation in Fe-based Superconductor LaFeAsO _{1-x} F _x	
	S. Wakimoto, K. Kodama, M. Ishikado, M. Matsuda, R. Kajimoto, M. Arai, K. Kakurai, F. Esaka	156
	A. Iyo, H. Kito, H. Eisaki, S. Shamoto	

No.	「Title」	Page
	Neutron Scattering - Residual Stress -	
1-10-1	Evaluation of Compressive Deformation Behavior of Zr-Al-Ni-Cu Balk	
	Metallic Glass Containing ZrC Particles by Neutron Diffraction	159
	H. Suzuki, J. Saida, J. Katsuyama, M. Imafuku, H. Kato, S. Sato	
1-10-2	A development study of a neutron method for measuring stress distribution	
	by an area detector	160
	T. Sasaki	
1-10-3	Internal Stress Measurement of Coarse Grain in Aluminum Casting Alloy	
	by Neutron diffraction	164
	M. Nishida	

No.	Γ Title 」	Page
Neutron Scattering - Others -		
1-11-1	Renovation of Ge-crystal monochromator for triple-axis neutron spectrometer AKANE H. Hiraka, Y. Miyake, K. Ohoyama, Y. Yamaguchi, K. Yamada	173
1-11-2	Activity in 2009 of Kinken Powder Diffractometer HERMES K. Ohoyama	174

No.	Γ Title 」	Page
	Neutron Radiography	
2-1	Development of the Imaging System Using a Neutron Color Image Intensifier	177
	R. Yasuda, T. Nojima, H. Iikura, T. Sakai, M. Matsubayashi	1//
2-2	Upgrading of Experimental Circumstances in TNRF	170
	T. Nojima, H. Iikura, R. Yasuda, T. Sakai, H. Hayashida, M. Matsubayashi	170
2-3	Three-Dimensional Observation of Water Distribution in PEFC by Neutron CT	170
	N. Takenaka, H. Asano, H. Murakawa, K. Sugimoto, R. Yasuda, M. Matsubayashi	179
2-4	Development of Visualization and Measurement Method using Neutron Radiography	
	for Thermal Hydraulics Phenomena in Energy Equipment	180
	N. Takenaka, H. Asano, H. Murakawa, K. Sugimoto, K. Mochiki	
2-5	Development of High Performance Imaging System for Neutron Image Intensifier	107
	K. Mochiki, Y. Wada, M. Okazaki, Y. Otsuka	187

No.	「Title」	Page
	Prompt Gamma-ray Analyses	-
3-1	A Study on Improving the Linearity of Flash ADCs Using Neutron-capture Prompt Gamma Rays K. Furutaka, A. Kimura	193
3-2	Development of a New Method to Identify Nuclear Levels on Neutron Capture Reactions T. Kin, K. Hara, M. Oshima	194
3-3	Neutron Flux Correction for Standard Rice Sample Measurement in MPGA Y. Toh, Y. Murakami, M. Oshima, M. Koizumi	195
3-4	Multiple prompt γ -ray measurements of the ⁷⁴ Ge(n, γ) ⁷⁵ Ge reaction K. Y. Hara, T. Kin, M. Oshima	196
3–5	Neutron-induced prompt gamma-ray analysis of solid environmental samples and geochemical samples (V) M. Matsuo, A. Kuno, K. Shouzugawa, A. Hasegawa, D. Moromachi, A. Takahashi, S. Yamanoi N. Hara, M. Fujii	197
3-6	Prompt gamma-ray analysis of meteorite samples M. Ebihara	202
3-7	Prompt γ-ray analysis for igneous and sedimentary rock samples. T. Fukuoka, H. Shinjo, T. Shindo, K. Aoki, H. Kusuno, A. Miura, Y. Egawa, M. Seki	206
3-8	Prompt Gamma-ray Analysis of Limestone for the Initial Application of In-situ-produced Cosmogenic ³⁶ Cl in Calcite for Quantifying Earth Surface Processes K. Sueki, Y. Matsushi, K. Sasa	210
3-9	Compositions of Southwestern Japan arc magmas and characterization of subduction components T. Hasenaka, M. Miyoshi, M. Shimono, Y. Sekiguchi, N. Hori, T. Tamura, S. Ariga, Y. Ueda	214

No.	Γ Title J	Page
	Neutron Activation Analyses	
4-1	Studies on Cosmo-geochemical materials by neutron activation analysis (${ m I\!I}$)	
	T. Fukuoka, Y. Saito, M. Ishimoto, H. Kusuno, T. Shindo, A. Miura, Y. Sugiuchi, K. Aoki	223
	Y. Shimada, T. Uno, Y. Tazawa	
4-2	Determination of ⁵³ Mn in Meteorites by Neutron Activation Analysis (II)	220
	Y. Oura	225
4-3	Geoenvironmental assessment using INAA(IV)	
	-Accurate analysis of platinum group elements and rhenium in geological samples by	222
	isotope diluted NAA—	200
	M. Takeda, T. Tanaka, M. Minami, Y. Asahara, K. Suzuki, K. Hayashi, H. Tanaka	
4-4	Quantitative analysis of trace metals in marine bacteria	2/19
	H. Minowa	240
4-5	Determination of elements of agricultural crop and soil	252
	T. Nakanishi	202

4-6	INAA analysis of hair samples K. Toyoda, H. Kawamura, A. Rahayu	256
4-7	Distribution and Accumulation Characteristics of Extractable Organic Halogens (EOX) in Organs and Tissues of Great Cormorant M. Kawano, M. Matsuda	260
4-8	Analysis of QTL related to trace elements accumulation in seeds of Lotus japonicus J. Furukawa	264
4–9	An analytical study on biohazardous trace metals in Diesel Exhaust Particles (DEP) S. Kasahara, Y. Noya, K. Seki, Y. Kuge	268
4-10	NEUTRON ACTIVATION ANALYSIS OF ARSENIC CONTENTS IN SOILS OF THE GANGES RIVER BASIN K Tanabe	270

No.	「Title」	Page
Production of Radio Isotopes		
5-1	¹⁹⁷ Au Mössbauer study of Au nano-clusters (2)	277
	Y. Kobayashi, Y. Honma	211

No.	「 Title 」	Page
Others		
6-1	Observation of boron in various steel materials by α-particle track etching method	000
	K. Asakura, T. Koseki	283

This is a blank page.

1. 中性子散乱 1)構造・励磁

1. Neutron Scattering 1) Structure • Excitation

This is a blank page.

Diffuse Scattering from Lithium Ion Conductors $Li_{1+x}Ge_{2-x}Al_x(PO_4)_3$

Y. Fujita, H. Takahashi, T. Sakuma¹ and N. Igawa²

Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511 ¹Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512

² Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

 $LiGe_2(PO_4)_3$ is a inorganic compound that has a so-called NASICON-type structure and indicates high Li⁺ ion conduction. The substitution of Ge^{4+} ions by Al^{3+} ion makes the conductivity enhancement $^{1)}$. The chemical formula for Al-substituted compound is expressed such as $Li_{1.5}Ge_{1.5}Al_{0.5}(PO_4)_3$, which is abbreviate as LGA5. The crystal structures of Al-free LGA0 and LGA5 are identical and the space group is R-3c. The purpose of the present study is to elucidate the structural feature of LGA5 having enhanced ionic conduction. In the present study, neutron diffraction experiments were performed for LGA0 and LGA5 at 10 and 300K by HRPD installed at JRR-3M. Diffuse scattering patterns from LGA0 at 10 and 295K are shown in Fig. 1 (A). The profile and temperature dependence of diffuse scattering is well described by thermal diffuse scattering of Li-O, P-O and Ge-O correlations as shown by the solid curves $^{2)}$. On the other hand, the diffuse scattering intensity from LGA5 is rather strong and less temperature dependent compared to that of LGA0 as shown in Fig. 1 (B). Moreover the diffuse scattering profile could not be fully reproduced only by the thermal diffuse scattering terms. Some disagreements between the experimental diffuse scattering and the calculated one would arise from the static disorder of Li⁺ ions. Main part of the disagreements correspond to the diffuse oscillation having correlation length of 2.7Å. Rietveld and MEM analyses for LGA5 indicate that the Li⁺ ions distribute the stable 6b site, 36f site and around 18e site, although the Li⁺ ions exclusively occupy 6b site in LGA0. It is considered that the statistical distribution of Li⁺ ions in several sites is responsible to the temperature-insensitive diffuse scattering in LGA5.

References

- S. Li, J. Cai and Z. Lin :"Solid State Ionics", <u>28-30</u>, 1265 (1988).
- T. Sakuma, Y. Nakamura, A. Murakami, H. Takahashi and Y. Ishii : "High Temp. Mater. Proc.", <u>18</u>, 41 (1999).

Figure 1: Diffuse scattering profiles from neutron diffraction at 10 and 295K. Solid lines are fitting curves by the thermal diffuse scattering terms from Li-O, P-O and Ge-O correlations. (A) and (B) are LGA0 and LGA5, respectively.

原子炉:JRR-3 装置:HRPD(1G) 分野:中性子散乱(構造)

Structure and Properties of Ferroelectric Water Ice

H. Fukazawa¹, M. Arakawa^{1,2} and H. Kagi^{1,2}

¹Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195 ²Graduate School of Science, The University of Tokyo, Tokyo 113-0033

Whether or not ice exists as ice XI anywhere in the universe is a question that has attracted interest in astrophysics and physical chemistry because of its ferroelectric nature. Long-range electrostatic forces caused by this ferroelectricity might be an important factor in planet formation [1-11]. The existence of ice XI on Pluto and Charon and the formation of ice XI in space have been predicted. Our neutron diffraction study provides firm evidence that hydrogen with a positive charge is aligned along the c-axis and ice XI becomes ferroelectric (Fig. 1(a)). However, clear evidence of the existence of ferroelectric ice in the universe has not been obtained.

From neutron diffraction and scattering measurements, we have studied ice with impurities, such as potassium, sodium and lithium, that acted as a catalyst. We found that the doped ice that has once been converted to ice XI is a stronger ferroelectric ice than that has never been converted. We also observed the existence of the ferroelectric ice under high-pressure and its formation from compressed amorphous ice. The results suggest that a cool icy body in space has a thick layer of ferroelectric ice (Fig. 2(b)). Furthermore, we investigated spectral and vibrational properties of ferroelectric ice investigated by inelastic neutron scattering and infrared absorption measurements. Because the spectral properties of ferroelectric ice are clearly different from those of ordinary ice, the distinct ferroelectric ice in the universe is detectable using infrared telescopes.

References

- H. Fukazawa, et al. :"Astrophys. J. Lett.", <u>652</u>, pp. L57-L60 (2006).
- H. Fukazawa, et al. :"Physica B", <u>385-386</u>, pp. 113-115 (2006).
- 3) H. Fukazawa : "JAEA RD Review", p. 43 (2007).
- ý) H. Fukazawa : "Planetary People",
 $\underline{16}, \ \mathrm{pp.}$ 7-12

(2007).

- H. Fukazawa : "Hamon (The Japanese Society for Nuetron Science)", <u>18</u>, pp. 97-102 (2007).
- H. Fukazawa : "Low Temperature Science", <u>66</u>, pp. 159-167 (2008).
- H. Fukazawa : "J. Crystallog. Soc. Jpn.", <u>51</u>, pp. 84-85 (2009).
- H. Fukazawa et al. : "Nucl. Instrum. Methods Phys. Res. A", <u>600</u>, pp. 279-281 (2009).
- 9) M. Arakawa, et al. :"Astrophys. J. Suppl. Ser.", <u>184</u>, pp. 361-365 (2009).
- M. Arakawa, et al. :"J. Mol. Struct.", <u>972</u>, pp. 111-114 (2010).
- M. Fukazawa : "Radioisotopes", <u>59</u>, pp. 239-247 (2010).

Figure 1: (a)Structure of ferroelectric ice XI. Scattering length density map of ice XI with hydrogenordered arrangement; obtained from the maximum entropy analysis for neutron powder diffraction. (b)Existence of thick ferroelectric ice in cool icy body.

Investigation of coupling between pseudo-spin and phonon in relaxor PMN34%PT

M. Matsuura and K. Hirota

Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka,

560-0043.

Relaxor ferroelectrics gain much attention due to their extreme piezoelectric responses over a wide temperature range. It is widely believed that polar nanoregion (PNR), a local nanometer-sized region with ferroelectric polarization and atomic shift, plays an important role in the relaxor behavior. PMN-xPT system is a solid solution of typical relaxor Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN) and normal ferroelectric PbTiO₃ (PT). With increasing x, PMN-xPT system change its dielectric response from relaxor to normal ferroelectric. Last year, we have found the dipole motions in PNR couple with phonon modes in the relaxor PMN-30%PT, which is explained by pseudospin-phonon coupled model.[1] To study the change of pseudo-spin phonon coupling towards normal ferroelectric, we explored the phonon spectrum in PMN-34%PT. Neutron scattering experiments were performed on the triple-axis spectrometer HER and PONTA installed at the JRR-3 of JAEA.

Figures 1 show the contour map of the phonon scattering intensity at (1 + q, 1 - q)q, 0) measured at T = 400 K. For (a) PMN-30%PT, the transverse acoustic (TA) mode below 2 meV is heavily overdamped, while the TA mode above 2 meV is underdamped. For (b) PMN-34%PT, the upper energy of the damped TA mode increases to 4 meV. From the pseudospin-phonon coupled model, a damping of phonon modes is associated with a coupling between phonon modes and pseudospin flipping motion. The increase of the damping energy region with increasing PT-ratio suggests that the pseudospin flipping becomes fast towards normal ferroelectric.

References

 Y. Yamada *et al.*, J. Phys. Soc. Jpn, **36** 641 (1974).

Fig. 1. Intensity contour map of the phonon scattering intensity at (1 + q, 1 - q, 0) as a function of q and energy measured at T = 400 K.

Activity Report on Neutron Scattering Research: Experimental Reports **17** (2010) Report Number: 1026

Phase Transition Mechanism of KDP Investigated by Structure Refinement

H. Mashiyama^{*A*}, T. Miyoshi^{*A*}, T. Asahi^{*A*}, H. Kimura^{*B*}, Y. Noda^{*B*} ^{*A*}*Fac. Sci.*, *Yamaguchi Univ.*, ^{*B}IMRAM*, *Tohoku Univ.*</sup>

In the room temperature phase of KDP (KH₂PO₄), a proton occupies two sites disorderly. Below $T_c = 123$ K, the proton is localized near one of the oxygen atoms, and a spontaneous polarization appears along the *c*-axis; perpendicular to the proton ordering. If protons are replaced by deuterons, the transition temperature elevates about 90 K, which is a well known isotope effect of this crystal. In order to understand the relation between the proton ordering and ferroelectricity, we have refined the crystal structure by the use of neutron diffraction intensity from the single crystal mounted on FONDER (T2-2).

Figure (a) displays the atomic displacement through the phase transition. Correlated with the proton ordering below T_c , P and K ions shift along the *c*-axis, while O atoms remain almost the same positions. This means that the O-P bond length and the O-P-O bond angle of a PO₄ tetrahedron change about 0.03 Å and 5 °, respectively, below T_c , with accompanying the translation of K. Such displacements of P and K induce the spontaneous polarization along the *c*-axis.

Although the atomic displacements are rather large at T_c , the thermal vibration amplitudes change continuously through T_c as shown in Fig.(b). Here the split atom method is applied for H atoms above T_c . The broken lines are refereed to Nelmes *et al* [J. Phys. C: 15 (1982) 59].

We note that the atomic displacements of K and P are smaller than the thermal parameters, $\sqrt{U_{33}}$, which suggests that all the heavy atoms vibrate within single minimum potentials except for protons (deuterons). On the other hand, hydrogen atoms are successfully represented by the double peaked distribution (split atoms) in accordance with the disordered picture of hydrogen. It is well known that the crystal is piezoelectric and the elastic constant softens completely, while the dielectric constant becomes large but remain finite at T_c . Considering all the above facts together, we consider that proton ordering distorts the PO₄ tetrahedron, i.e. stabilizes a H₂PO₄ molecular; which induces the elastic deformation of the unit cell, as well as the appearance of the spontaneous polarization. This picture of structural transitions is neither a pure order-disorder nor a displacive type, but so to say a chemical instability type.

1-1-5 Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at high temperatures

Kagomiya I, Kinoshita T., Kakimoto K. and Ohsato H. Nagoya Institute of Technology

Single crystals of SrFeO3-d were prepared to use for neutron diffraction analysis. The crystal structure parameter was refined as Cmmm. It was found that the isotropic temperature factors Uiso of Sr(1) and the O(2) were relatively larger compared to the general case, suggesting that ion vibration of the Sr(1) and the O(2) ions is much active. It is considerable that a facile transportation path for O2- ions are on the a-c plane, because both Sr(1) and O(2) ions are located in the a-c plane.

Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at high temperatures

Kagomiya I, Kinoshita T., Kakimoto K. and Ohsato H. Nagoya Institute of Technology

Single crystals of SrFeO3-d were prepared to use for neutron diffraction analysis. The crystal structure parameter was refined as Cmmm. It was found that the isotropic temperature factors Uiso of Sr(1) and the O(2) were relatively larger compared to the general case, suggesting that ion vibration of the Sr(1) and the O(2) ions is much active. It is considerable that a facile transportation path for O2- ions are on the a-c plane, because both Sr(1) and O(2) ions are located in the a-c plane.

1-1-7 Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at high temperatures

Kagomiya I, Kinoshita T., Kakimoto K. and Ohsato H. Nagoya Institute of Technology

Single crystals of SrFeO3-d were prepared to use for neutron diffraction analysis. The crystal structure parameter was refined as Cmmm. It was found that the isotropic temperature factors Uiso of Sr(1) and the O(2) were relatively larger compared to the general case, suggesting that ion vibration of the Sr(1) and the O(2) ions is much active. It is considerable that a facile transportation path for O2- ions are on the a-c plane, because both Sr(1) and O(2) ions are located in the a-c plane.

1-1-8 Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at high temperatures

Kagomiya I, Kinoshita T., Kakimoto K. and Ohsato H. Nagoya Institute of Technology

Single crystals of SrFeO3-d were prepared to use for neutron diffraction analysis. The crystal structure parameter was refined as Cmmm. It was found that the isotropic temperature factors Uiso of Sr(1) and the O(2) were relatively larger compared to the general case, suggesting that ion vibration of the Sr(1) and the O(2) ions is much active. It is considerable that a facile transportation path for O2- ions are on the a-c plane, because both Sr(1) and O(2) ions are located in the a-c plane.

1-1-9 Oxygen defect structure of oxygen ionic and electronic mixed conductive oxides at high temperatures

Kagomiya I, Kinoshita T., Kakimoto K. and Ohsato H. Nagoya Institute of Technology

This study tries to investigate the facile transportation paths for O2- ions. We propose that the information leads to a precept to improve oxygen permeation by controlling the O2- transportation path. With a first step of this study, we prepared single crystal of SrFeO3-d and then investigated the crystal structure as well as oxygen vacancies structure at 500 K. Based on the analyzed structures, we discussed facile transportation paths for O2- ions in SrFeO3-d.

The crystal structure parameter at 500 K was refined as Cmmm, which is same as the structure at r.t.

Neutron Diffraction Study of KH₃(SeO₃)₂

E. Magome¹, M. Machida², R. Kiyanagi³, H. Kimura³ and Y. Noda³

¹ Kyushu Synchrotron Light Research Center, Tosu, Saga, 841-0005

² Department of Physics, Kyushu University, Higashi-ku, Fukuoka, 812-8581

³ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai,

980-8577

Potassium trihydrogen selenite, $KH_3(SeO_3)_2$ (abbreviated to KTS) undergoes a second-order phase transition from a paraelastic phase with space group Pbcn to a ferroelastic phase with space group P2₁/b at $T_C = 212$ K.[1] The ferroelastic phase transition at T_C shows a relatively large isotope effect by deuteration with $\Delta T_C \simeq 75$ K.[2] In order to elucidate the isotope effect appeared in the structure of hydrogen bonds, we have performed detailed structure analyses of KTS in paraelastic phase.

Neutron diffraction measurements were made on a four-circle diffractometer FONDER at JRR3M reactor in JARERI, Neutrons monochromized by a Tokai. Ge(311) monochromater were used, where wavelength is 1.239 Å. Diffraction data up to $2\theta \leq 156^{\circ}$ were collected at T = 227 K in paraelastic phase. Independent 654 reflections with $|F_{\rm O}| \geq 3\sigma(|F_{\rm O}|)$ were used for the structure refinements. Atomic parameters were refined by least-squared calculations assuming an anisotropic secondary extinction effect. Nuclear density was estimated by PRIMA.[3] The lattice parameters are a = 16.129(5) Å, b = 6.230(5) Å, c = 6.292(2) Å at T = 227 K.

Figure 1(a) shows the crystal structure determined in paraelastic phase. The hydrogen bond chains are formed along the *c*-axis by mutually linking SeO₃ tetrahedra through the hydrogen bonds with H1. Moreover, the chains are interconnected by the hydrogen bonds with H2 disordered over two sites. The O-H1-O and O-H2-O hydrogen bond distances are 2.601(2) Å and 2.550(2) Å, respectively. Figure 1(b) shows the nuclear density distribution for

H2 derived by the MEM analysis. Nuclear density map clearly indicates doubly peaked distributions elongated along the hydrogen bond direction. The isotope effect is discussed in the two-dimensional potential model on the basis of the nuclear density distribution for the proton.

References

- L. A. Shuvalov *et al.*:Sov. Phys. Crystallogr. 12 (1967) 315.
- [2] Y. Makita *et al.*: J. Phys. Soc. Jpn. 44 (1978) 225.
- [3] F. Izumi and R. A. Dilanian:Transworld Research Network, Trivandrum **3** (2002) 699.

Fig. 1. (a) Crystal structure of $KH_3(SeO_3)_2$ in paraelastic phase. (b) Nuclear density distribution for $H2^+$ derived by the MEM analysis.

Oxide and nitride ion distribution effect in crystal structure of new oxynitride superconductor

S. Kikkawa(1), Y. Masubuchi(1), T. Motohashi(1), M. Wakeshima(2), and Y. Oohashi(1) (1) Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan and (2) Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan

Oxynitrides are new materials having interesting chemical and physical properties, because they have characteristic between oxides and nitrides. Unexpected electronic/optical properties are appearing due to a variation in cation-anion covalency in coexistence of oxide and nitride ions. Recently, our research group have reported that Nb-Al oxynitride having the rock salt type crystal lattice showed superconductivity with Tc = 15 K [1]. After annealing at 1100 oC in evacuated sealed tube, its rock salt crystal improved the crystallinity and its superconducting volume fraction increased above 30%. In this study, we investigated the crystal structure and oxide/nitride ionic distribution in the Nb-Al oxynitrides before and after thermal annealing.

Nb-Al oxynitride was prepared by a gel nitridation method [1]. As nitrided powder was post annealed at 1500 oC for 3 h in 0.5 MPa of nitrogen atmosphere. Neutron diffraction measurements at room temperature were carried out with the diffractometer HERMES installed at the JRR-3M reactor in Japan Atomic Energy Agency, Tokai, Japan. Program RIETAN-2000 [2] was used for the structure refinement.

The observed, calculated and difference neutron diffraction profiles for the post annealed Nb-Al oxynitride having the starting composition of Nb:Al = 0.75:0.25 are shown in Fig. 1. Small amount of impurities was observed in the diffraction profile. The structure refinement and oxygen/nitrogen analysis showed the composition of the rock salt type Nb-Al oxynitride in the post- annealed products was refined to be (Nb0.89(1)Al0.11(1))(O0.16(1)N0.84(1)) independent of their starting compositions. Cation sites were randomly occupied by both Nb and Al. Both oxide and nitride ions were also randomly distributed on anion sites in the oxynitride. Recently we have obtained single phase of Nb-Al oxynitride at Nb:Al = 0.89:0.11 and its showed Tc = 17 K and 91% of superconducting volume fraction after its thermal annealing.

References

[1] S. Yamamoto, et al., J. Alloys Compd., 482 (2009) 160-163.

[2] F. Izumi and T. Ikeda, Mater. Sci., Forum, 198 (2000) 321-324.

Fig. 1. Neutron diffraction profiles for the post annealed Nb-Al oxynitride at Nb:Al = 0.75:0.25.

Structure and phase transitions in a lead-based inorganic-organic perovskites C5H10NH2PbI3

Miwako Takahashi(A), Takurou Kawasaki(A), Munehiko Nakatsuma(A) and Yukio Noda(B) (A)IMS., Univ. of Tsukuba, (B)IMRAM, Tohoku Univ.

Structural phase transitions have been studied for a lead-based inorganic-organic perovskites C5H10NH2PbI3. The structure undergoes temperature-induced successive phase transitions: phase I at room temperature, phase II for 255.5K to 284.5K, phase III for 250K to 255.5K and phase IV below 250K. From the single crystal diffraction measurements at FONDER, Bragg peak splitting was observed at phase II. The angle of splitting increases gradually with decreasing temperature, while the integrated intensity being almost constant (Fig. 1(a)). The result indicates that the structure changes from orthorhombic at phase I to monoclinic at phase II. Superlattice reflections appear below the transition temperature from phase I to II. The intensity increases with decreasing temperature (fig. 1(b), red circles). At phase III, peaks appear at which reflections are forbidden for C2221 (fig.1(b), blue circles). The results are interpreted as that the structure changes from C2221 (Phase I) to P21 with keeping the same volume of unit cell (phase II), and to P21 with enlarging the volume twice (phase III).

Fig. 1. Temperature dependences of intensity and angle splitting for (400) fundamental peak (a) and for (1/2 - 7/2 4) and (2 - 11 0) superlattice peaks (b).

Atomic and magnetic structures in Pt-3.6 at.% Mn alloy

M. Takahashi(A), K. Ohshima(A), H. Kato(A) and Y. Noda(B) (A)IMS., Univ. of Tsukuba, (B)IMRAM, Tohoku Univ.

Atomic and magnetic structures are studied for Pt-13.6 at.%Mn alloy. Pt-rich Pt-Mn alloys have two atomic ordered phases of Cu3Au-type (high temperature phase) and ABC6-type (low-temperature phase) below order-disorder transition temperatre from fcc disordered phase. Analyzing ratios of Bragg intensities at Gamma points, X-points and L-points of fcc fundamental lattice, it is found that the ABC6- type ordered structure is formed in the alloy with the order parameters S1 and S2 being 0.99 and 0.68, respectively (Fig. 1(a)). Incommensurate magnetic peaks are observed at around (x 1+x 1/2) and its equivalent points of fcc fundamental lattice with x=0.7. The magnetic intensities increases gradually below 30K (Fig.1(b)) which is higher than spin-glass transition temperature TG= 17K determined by magnetic susceptibility for the alloy. The wave vector of the incommensurate magnetic structure x increases with increasing Mn concentration (Fig.1(c)), indicating that its origin is Fermisurface nesting effect.

Fig. 1. (a)Integrated Bragg intensities at fundamental, X- and L-points. (b)Temperature dependence of the integrated intensities of incommensurate magnetic scattering. (c)Concentration dependence of incommensurate wave vector of the magnetic structure.

Nuclear diffuse scattering in triangular lattice system LuFeCoO4 with relaxor-like behavior

Minoru Soda1, Takuya Aoyama2, Yusuke Wakabayashi1, and Kazuma Hirota2 1 Division of Material Physics, Graduate School of Engineering Science, Osaka University,

Toyonaka, Osaka 560-8531, Japan 2 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

In relaxor systems, temperature dependence of the dielectric permittivity shows a broad maximum and a frequencydependence. [1] Since the relaxors have a high dielectric constant around room temperature, they are industrially important. To explain physical behaviors of relaxors, Burns proposed the ideas that randomly oriented, very local polar regions start to appear from high temperature. [2] This "Polar Nano Region" (PNR) is said to be the most important concept to understand the origin of the relaxor properties.

As a new example of such relaxor systems, we have studied the triangular lattice system LuFeMO4 (M=Cu, Mg, and Co). For LuFe2O4, a ferroelectricity induced by a charge order has been observed. LuFeMO4, in which M is randomly substituted at the Fe site, shows the relaxor-like behavior in the dielectric constant. [3] Relaxor-like dielectric property has hardly ever been reported in a triangular lattice system. In this study, we use a neutron scattering technique to examine the origins of the relaxor-like behavior in LuFeCoO4.

At T=300 K, we have observed the anisotropic nuclear diffuse scattering around the Bragg reflection. Figure 1 shows a contour plot of the intensity distribution around the Q-point (1,1,0) for the scattering plane (hhl). Here, we use the hexagonal unit cell. This diffuse scattering is similar to the well-known butterfly pattern reported in PbMg1/3Nb2/3O3 (PMN), where the diffuse scattering intensity extends along the [110] and [1-10] directions of the cubic symmetry. [4] However, the direction of the diffuse scattering in LuFeCoO4 is not easy. Furthermore, the T-dependence of the intensity of the

anisotropic diffuse scattering along [110] is different from that along [001] although the intensities along both directions decrease with increasing T. Since the T-dependence of the dielectric constant along c-axis is also different from that along c-plane, it is expected that the anisotropic diffuse scattering has the relation with the relaxor-like behavior.

[1] A. A. Bokov, and Z.-G. Ye, J. Mater. Sci. 41 (2006) 31.

[2] G. Burns, and F. H. Dacol, Phys. Rev. B 28 (1983) 2527.

[3] Y. Matsuo et al., Jpn. J. Appl. Phys. 47 (2008) 8464.

[4] M. Matsuura et al., Phys. Rev. B 74 (2006) 144107.

Fig. 1. Fig. 1 Contour plot measured around the Q-point (1,1,0) at 300 K for the scattering plane (hhl).
Crystal Structure Analysis of Ruddlesden-Popper Type Sr3Ti1.8Co0.2O7

Kazuki Omoto †, Hiroki Yamada †, Nuansaeng Sirikanda ‡, Tatsumi Ishihara ‡, Masatomo Yashima †

 Department of Material Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8502, Japan and ‡ Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.

Ruddlesden-Popper type oxide Sr3Ti2O7 series have been investigated due to their high oxygen permeation rates. In particular, the doping of Co atoms into Sr3Ti2O7 was highly effective for increasing the oxygen permeation rate of Sr3Ti2O7 [1]. In the present work, we have investigated the crystal structure of Sr3Ti1.8Co0.2O7 with neutron powder diffractometry.

Sr3Ti1.8Co0.2O7 material was prepared by solid-state reactions. Sr3Ti1.8Co0.2O7 was prepared with stoichiometric mixtures of the SrCO3, TiO2, CoO, which were mixed with ethanol in an agate pot and calcined at 1273 K for 6 h in air. The calcined powder was then milled again. After a cold isostatic pressing at 160 kPa, the disk was sintered in air at 1573-1873 K for 6 h. The phase purity of Sr3Ti1.8Co0.2O7 was confirmed by X-ray diffraction measurements.

We performed neutron powder diffraction experiments at 25.5 degrees C on the Kinken powder diffractometer for high efficiency and high resolution measurements, HERMES, of Institute for Materials Research, Tohoku University, installed at the JRR-3M reactor in Japan Atomic Energy Agency (JAEA), Tokai [2].

Neutrons with a wavelength of 1.8204 angstrom were obtained by the 331 reflection of the Ge monochromator and 12blank-sample-22 collimation.

Figure 1 shows the Rietveld pattern of Sr3Ti1.8Co0.2O7 at 25.5 degrees C. The reliability factors were Rwp=7.72%, RB=5.10%, and RF=1.60%. Lattice parameter were a=3.89345(2), b=3.8935(2), and c=20.329(1) angstrom.

 N. Sirikanda, H. Matsumoto, T. Ishihara, Solid State Ionics in press (2010).
 K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani and Y. Yamaguchi, Jpn. J. Appl. Phys. 37(1998) 3319.

Fig. 1. Neutron diffraction profiles at room temperature for Sr3Ti1.8Co0.2O7

Crystal Structure of Exhaust Gas Catalyst Ceria-Zirconia Nanoparticles CexZr1-xO2

Daisuke Sato, Masatomo Yashima , Takahiro Wakita

Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-Ku, Yokohama, Kanagawa 226-8502, Japan;Daiichi Kigenso Kagaku Kogyo Co., Ltd., Hirabayashi-Minami 1-6-38, Suminoe-ku, Osaka 559-0025, Japan

Ceria-zirconia (CexZr1-xO2) catalysts are widely used in the cleaning of exhaust gases from automobiles. The development of improved catalysts requires a better understanding of crystal structure and oxygen-ion diffusion in ceria-zirconia materials. The crystal structures of CexZr1xO2 have extensively been investigated by some techniques. For bulk Ce1-xZrxO2 solid solutions the structural disorder was reported to be an important factor of their high catalytic activity. [1] Nevertheless, the structural disorder in CexZr1xO2 nanoparticles remain poorly understood. The purpose of this work is to study the structural disorder of Ce1xZrxO2 nanoparticles by the Rietveld analvsis of neutron powder diffraction data. Neutron powder diffraction measurements of CexZr1-xO2 nanoparticles (0?x?1) were performed in air with a 150-detector system, HERMES, installed at the JRR-3M reactor in Japan Atomic Energy Agency, Tokai, Japan. Neutron with wavelength 1.8204 angstrom was obtained by the 331 reflection of a Ge monochromator. Diffraction data were collected in air at 298 K. The powder diffraction data were analyzed by the Rietveld method with RIETAN-FP [2]. Unit-cell parameters of tetragonal CexZr1-xO2 increased with x. The oxygen displacement from the regular 8c position of the cubic fluorite-type structure in tetragonal CexZr1-xO2 decreased continuously with x. The isotropic atomic displacement parameter of the oxygen atoms U(O) in CexZr1-xO2 increased with an increase of CeO2 content x in 0.2?x?0.5, while the U(O) decreased with x in 0.5?x?1.0. Thus, the Ce0.5Zr0.5O2 composition has the highest U(O) value in the CexZr1-xO2 solid solutions (0.2?x?1.0), suggesting higher bulk diffusivity of the oxygen ions in Ce0.5Zr0.5O2 compared with those at other compositions. The greater U(O) in Ce0.5Zr0.5O2 is a possible factor of its higher catalytic activity.

References

[1] Yashima & Wakita, Appl. Phys. Lett., 94 (2009) 171902

[2] F. Izumi and K. Momma, Solid State Phenomena. 15-20 (2007) 130.

Fig. 1. (1) (2)

Crystal structure analysis of the cubic perovskite-type La0.4Ba0.6CoO3-d

Yi-Ching Chen (A), Masatomo Yashima (A), Takashi Ohta (A), Kenji Ohoyama(B) (A) Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259-J2-61, Midori-ku, Yokohama-shi, 226-8502, Japan; (B) Institute for Materials Research, Tohoku University, Aoba, Sendai, 980-8577, Japan

The lanthanum barium cobalite, La0.4Ba0.6CoO3-x is one of mixed oxideionic and electronic conducting ceramics and also a candidate of cathode material in solid oxide fuel cells (SOFCs) [1]. Our present study is to investigate the crystal structure and oxygen ions diffusion path of the cubic Pm-3m perovskite-type La0.4Ba0.6CoO3-x by in situ neutron powder diffraction measurements from 27 to 1250 oC.

La0.4Ba0.6CoO3-x pellets were prepared by Mitsubishi Materials Co., Tokyo, Japan. All the neutron powder diffraction data of La0.4Ba0.6CoO3-x were collected in the temperature range from 27 to 1250 oC and in 2 θ range from 7 ° to 157 ° in air by a furnace [2] and 150-detector system HERMES [3] with a neutron wavelength of 1.8265(1) angstrom.

Neutron diffraction profiles indicated that La0.4Ba0.6CoO3-x has a cubic perovskitetype structure in the whole temperature range. The diffraction data were analyzed by a computer program RIETAN-FP [4] based on Rietveld analysis. The refined unit-cell parameters and atomic displacement parameters of La0.4Ba0.6CoO3-x increased with increasing temperature. The reliability factors and goodness of fit at 1010 oC (Figure) in the Rietveld analysis were Rwp = 5.14 %, RI = 8.77 %, RF= 4.95 % and S = 2.43. The unit-cell parameters were a = b = c = 4.0182(3)angstrom at this temperature. The oxygen atoms showed larger atomic displacement parameters perpendicular to the Co-O bond with larger U22(O) = U33(O) = 0.0073(1) nm?2 > U11(O) = 0.0042(1) nm?2.This reveals that the oxygen diffusion path of La0.4Ba0.6CoO3-x is similar with that for La0.6Sr0.4CoO3-x [5].

[1] T. Ishihara, S. Fukui, H. Nishiguchi, Y. Takita, Solid State Ionics, 2002, 152-153, 609-613.

[2] M. Yashima, J. Am. Ceram. Soc., 2002, 85, 2925-2930.

[3] K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani, Y. Yamaguchi, Jpn. J. Appl. Phys., Part 1, 1998, 37, 3319-3326.

[4] F. Izumi, K. Momma, Solid State Phenom, 2007, 130, 15-20.

[5] M. Yashima, T. Tsuji, J. App. Cryst., 2007, 40, 1166-1168.

Fig. 1. Rietveld pattern for neutron diffraction data of La0.4Ba0.6CoO3-x at 1010 oC

Structure analysis of Imma perovskite-type oxynitride LaTiO2N

Mio Saito [a], Masatomo Yashima [a], Hiromi Nakano [b], Tsuyoshi Takata [c], Kiyonori Ogisu [c], Kazunari Domen [c]

[a] Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259-J2-61, Midori-ku, Yokohama-shi, 226-8502, Japan, [b] Cooperative Research Facility Center, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi-shi, 441-8580, Japan, [c] Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

LaTiO2N exhibits interesting photocatalytic,[1] optical[1,2] and dielectric[3] properties. The purpose of this work is to examine crystal structure of highly crystalline LaTiO2N prepared by a flux method. We report here the first example of Imma perovskite-type oxynitride.

A high-purity and highly-crystalline La-TiO2N sample with deep red colour was prepared using a NaCl flux. Neutron powder diffraction data of LaTiO2N were measured by the diffractometer HERMES with a 1.84885 angstrom neutron beam. Neutron diffraction data were analyzed by Rietveld analysis. A computer program RIETAN-FP was utilized for the Rietveld analysis.

Rietveld refinements of the neutron diffraction data of LaTiO2N at 2.56 oC were performed on the basis of the perovskitetype structure with Imma space-group

symmetry. Reliability factors and goodness of fit at 25.6 oC were Rwp = 5.08%, RI = 4.01%, RF = 2.49% and GOF = 1.6994. Lattice parameters were a = 5.5730(2) angstrom, b = 7.8708(3) angstrom, c= 5.6072 (2) angstrom.

The crystal structure of LaTiO2N consisted of Ti(O,N)6 octahedra and La cations. The tilt system of Imma LaTiO2N was a0b-b-. The antiphase tilt angle was estimated to be 10.404(5) degree. [References]

1 (a) A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, J. Phys. Chem. A, 2002, 106, 6750-6753; (b) A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, J. Phys. Chem. B, 2003, 107, 791-797.

2 T. Moriga, K. Ikeuchi, R. Mashima, D. Aoki and K.-I. Murai, J. Ceram. Soc. Jpn., 2007, 115, 637-639.

3 F. Tessier and R. Marchand, J. Solid State Chem., 2003, 171, 143-151.

Fig. 1. Rietveld patterns of neutron data of LaTiO2N

Structure Analysis of Hydroxyapatite by Neutron Powder Diffraction

Yukihiko Yonehara(A), Masatomo Yashima(A), Hirotaka Fujimori(B) (A)Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8502, Japan (B)Graduate School of Science and Engineering, Yamaguchi Univ, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611, Japan

Hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most interesting materials in current technologies due to its wide possible applications as biomaterials and electrical devices. Its physical and chemical properties relating to such uses strongly depend on the crystal structure. In particular the stability of OH ion in the structure of hydroxyapatite has been suggested to be closely related to decomposition and ionic conductivity of hydroxyapatite. The OH lattice sites have been reported to be the conduction path of hydroxyapatite and to play an important role in the proton conduction. Thus, it is important to study the position of H atoms in the hydroxyapatite. However, information of hydrogen is difficult to be detected by the powder X-ray diffraction (XRD) technique. Here, we report the structure analysis of hydroxyapatite, through a neutron powder diffraction study.

A stoichiometric hydroxyapatite sample with Ca/P=5/3 was prepared with a citric acid method. The powders were put into vanadium holder and neutron powder diffraction measurement was performed in air with a 150 detector system, HERMES, installed at the JRR-3M reactor in Japan Atomic Energy Agency, Tokai, Japan. Neutron with wavelength 1.84491 angstrom was obtained by the 331 reflection of a Ge monochromator. Diffraction data were collected in air at 298.5 K. The experimental data were analyzed by Rietveld method. A computer program RIETAN-FP was utilized for the Rietveld analysis.

Rietveld analysis of hydroxyapatite at 298.5 K was carried out assuming the P21/c space group. As shown in Fig. 1, the calculated intensities agreed well with the observed ones. The reliability factors and

goodness of fit were Rwp = 5.19 %, RI = 1.16%, RF = 0.57% and S = 4.31. Lattice parameters were a = 9.4162(7) angstrom, b = 6.8789(2) angstrom, and c= 18.8685(12) angstrom. These values are consistent with the literature.

Fig. 1. Neutron powder diffraction patterns of hydroxyapatite at 298.5 K.

Crystal Structure, Diffusion Path and Oxygen Permeability of a Pr2NiO4-Based Mixed Conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+delta

Masatomo Yashima*, Sirikanda Nuansaeng** and Tatsumi Ishihara**

*Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-Ku, Yokohama, Kanagawa 226-8502, Japan, **Department of Applied Chemistry, ^{B}Faculty of Engineering, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka, Fukuoka 819-0395, Japan

We have investigated in situ the crystal structure, oxygen diffusion path, oxygen permeation rate and electrical conductivity of a doped praseodymium nickel oxide, Pr2NiO4-based mixed conductor, (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+delta (PLNCG) in air between 27 and 1015.6 oC. The PLNCG has a tetragonal I4/mmm K2NiF4-type structure which consists (Pr0.9La0.1)(Ni0.74Cu0.21Ga0.05)O3 of perovskite unit and (Pr0.9La0.1)O rock-salt one in the whole temperature range. Both experimental and theoretical electron density maps indicated two-dimensional networks of (Ni0.74Cu0.21Ga0.05)-O covalent bonds in PLNCG. Highest Occupancy Molecular Orbitals (HOMO) in PLNCG demonstrate that the electron-hole conduction occurs via Ni and Cu atoms in the (Ni0.74Cu0.21Ga0.05)-O layer. Bulk oxygen permeation rate was large (137 micro mol cm-2 min-1 at 1000 oC) and its activation energy was low (51 kJ mol-1 at 950 oC). Rietveld, maximum-entropy method (MEM) and MEM-based pattern fitting analyses of neutron and synchrotron diffraction data indicate a large anisotropic thermal motions of the apical O2 oxygen at the 4e site (0, 0, z; z is nearly equaled to 0.2)in the (Pr0.9La0.1)(Ni0.74Cu0.21Ga0.05)O3 perovskite unit. Neutron and synchrotron diffraction data and theoretical structural optimization show the interstitial oxygen (O3) atom at (x, 0, z) (x is nearly equaled to 0.6 and z is nearly equaled to 0.2). The nuclear density analysis indicates that the bulk oxide-ion diffusion occurs through the interstitial O3 and anisotropic apical O2 sites, which is responsible for the high oxygen permeation rate. The nuclear

density at the bottleneck on the oxygen diffusion path increases with temperature as well as the oxygen permeation rate. The activation energy from the nuclear density at the bottleneck decreases with temperature, which is consistent with the decrease of the activation energy from oxygen permeation rate. Extremely low activation energy (12 kJ mol-1 at 900 oC) from the nuclear density at the bottleneck indicates possible higher bulk oxygen permeation rates in quality single crystals and epitaxial thin films.

Fig. 1.

Study on the electric field-induced lattice deformation in nanocrystalline CuO

M. Hagihala1, X. G. Zheng1, T. J. Sato2, N. Matsuura3 1 Department of Physics, Saga University; 2 ISSP, Univ. of Tokyo; 3 Osaka University.

Recently we found that giant thermal expansion was realized in magnetic nanocrystals of CuO(1). CuO, the cupric oxide, is a unique transition metal mono oxide that was previously clarified by us to show strong spin-charge-lattice coupling and ferroelectric properties below its magnetic (antiferromagnetic) transition (2). We had demonstrated that the spincharge-coupling induced giant dielectric constant and ferroelectric-like spontaneous polarization. Recently, this strong chargespin-lattice coupling receives intense attention and CuO is grouped to the new category of multiferroic materials (3). As for the reason of the reversed thermal expansion, we suspect that the spontaneous polarization in the dielectric phase causes displacement of the ions on the lattice and therefore the expanding of the lattice. In a number of so-called multiferroic materials electric polarization and magnetic order are coupled, providing a possible direct link between magnetism and NTE for magnetic nanoparticles with low crystal symmetry. With the small number of atoms in the nanoparticles the displacement of ions may substantially influence the lattice equilibrium and hence increase the unit cell volume.

Therefore a neutron diffraction experiment was designed to explore possible electricmagnetic correlation in the nanocrystalline CuO. For this study a thin disc-like pellet (30 mm in diamter and 3 mm thick) was made using nanoparticles of CuO. Gold electric contacts were formed on the two sides of the pellet by cold sputtering. The pellet was then set into a specially designed crystat for the neutron diffraction measurement. The experiment was carried using beamline 4G at JRR-3. In order to investigate the effect of electric field on the lattice a high voltage of 1.4 kV was applied to the pellet sample during the experiment.

A small electric-field-induced lattice change was observed as shown in Fig. 1. As compared with the zero field data, the diffraction peak (111) shifted to slightly higher angles, implying lattice contraction under an electric field.

However, as is seen from this plot, the resolution of the present equipment for neutron diffraction is not sufficient. Further studies may be performed using the synchrotron xray facilities.

1. X. G. Zheng et al., Nature Nanotechnology 3, 724 (2008).

2. X.G. Zheng et al., J. Phys. Soc. Jpn. 70, 1054 -1063 (2001); Phys. Rev. Lett. 85, 5170 (2000); J. Appl. Phys. 92, 2703-2708 (2002); Yamada, H. et al., Phy. Rev. B 69, 104104 (2004).

3. Kimura, T. et al, Nature Materials 7, 291-294 (2008).

Fig. 1. Fig. 1 Filed-induced change of the (111) peak for nanocrystalline CuO.

A structure study of the double perovskite oxide Ba2NdSn0.3Sb0.7O5.85

Hiroki Kato*, Masatomo Yashima*, Paul J. Saines**, Brendan J. Kennedy** *Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-Ku, Yokohama, Kanagawa 226-8502, Japan; **School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia

Metal oxides with the double perovskitetype structure continue to attract attention due to the diverse range of properties including colossal magneto-resistance, ionic conduction, ferro- and piezoelectricity and ferromagnetism. Such properties are known to be strongly influenced by the crystal structure of the oxides. Therefore the structural studies of such perovskites are important in understanding these physical properties. The purpose of this work is to investigate the crystal structure of double perovskite oxide Ba2NdSn0.3Sb0.7O5.85.

The Ba2NdSn0.3Sb0.7O5.85 pellets were put in a home-made furnace [1]. The neutron powder diffraction measurements of Ba2NdSn0.3Sb0.7O5.85 were performed in air from 297 to 1676 K with a 150- detector system, HERMES [2], installed at the JRR-3M reactor in Japan Atomic Energy Agency, Tokai, Japan. Neutron with wavelength 1.81386 angstrom was obtained by the 331 reflection of a Ge monochromator. The experimental data were analyzed by Rietveld method. A computer program RIETAN-FP [3] was utilized for the Rietveld analysis.

Rietveld analysis of neutron powder diffraction data of Ba2NdSn0.3Sb0.7O5.85 at 297 K was carried out assuming the I2/m space group. Figure 1 shows the Rietveld pattern of Ba2NdSn0.3Sb0.7O5.85 at 297 K. The reliability factors and goodness of fit were Rwp = 5.00%, RI = 4.64%, RF = 2.35% and S = 1.49. The unit-cell parameters of Ba2NdSn0.3Sb0.7O5.85 increased with an increase of temperature.

References

[1] M. Yashima, J. Am. Ceram. Soc. 85 (2002) 2925.

[2] K. Ohoyama et al., Jpn. J. Appl. Phys. 37 (1998) 3319.

[3] F. Izumi and K. Momma, Solid State Phenomena 15-20 (2007) 130.

Fig. 1. Rietveld pattern of Ba2NdSn0.3Sb0.7O5.85 at 297 K.

Crystal structure analysis of the perovskite-type silver niobate AgNbO3

Shota Matsuyama*, Masatomo Yashima*, Hiroki Taniguchi**, Tomoyasu Taniyama**, and Mitsuru Itoh**

* Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan; **Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Silver niobate- (AgNbO3-) based compounds are candidates for high frequency/microwave materials. AgNbO3 has a perovskite-type structure. AgNbO3 is a lead-free material. The purpose of this work is to investigate the crystal structure of the perovskite-type AgNbO3 from room temperature to high temperatures.

Neutron diffraction data of AgNbO3 were collected in air using the HERMES [1], a diffractometer with a 150 multi-detector system, at 296, 442 and 587 K. The HER-MES is installed at the JRR-3M reactor in Japan Atomic Energy Agency, Tokai, Japan. Neutrons with wavelength 1.82646 angstrom were obtained by the 331 reflection of a Ge monochromator. A furnace with MoSi2 heaters [2] was placed on the sample table, and used for neutron diffraction measurements at high temperatures.

The experimental data were analyzed assuming the orthorhombic (space group Pbcm) perovskite-type structure by Rietveld method with a computer program RIETAN-FP [3]. Figure 1 shows the Rietveld fitting result for the neutron diffraction data of AgNbO3 measured at 442 K (Rwp = 13.97%, a =5.5466(4) angstrom, b =5.5927(4) angstrom, c =15.680(11) angstrom). The lattice parameters of AgNbO3 increased with increasing temperature.

References
[1] K. Ohoyama et al., Jpn. J. Appl. Phys. 37 (1998) 3319.
[2] M. Yashima, J. Am. Ceram. Soc. 85 (2002) 2925.
[3] F. Izumi and K. Momma, Solid State Phenom. 130 (2007) 15.

Fig. 1. Rietveld fitting result for the neutron diffraction data of AgNbO3 at 442 K.

Neutron diffraction study of SnO2-CeO2-SbOx system

K. Nomura (A), H. Kageyama (A), C. Minagoshi (B), Y. Kawabata (B), T. Maekawa (B),

and K. Kanda (B)

(A) National Institute of Advanced Industrial Science and Technology (AIST), (B)New Cosmos Electric Co., Ltd.

Recently, SnO2-based materials have been investigated as transparent conductive oxides, oxidation catalysts, and the sensing materials of semiconductor gas sensors [1]. Of these, as the sensing materials of sensors, SnO2-MOx (M = Al, Ce, etc.) systems have been mainly used. However, the detailed crystal structures of these systems are not clear yet. So far, we measured the neutron diffraction data of SnO2-MOx (M = Al, Ce) [2,3]and (SnO2)100(CeO2)a(SbOx)b (a = 1.0-3.0, b = 1.0-3.0 [4] systems, and investigated the crystal structure and the nuclear density distributions. In this study, we have investigated the crystal structure and the nuclear density distributions of (SnO2)100(CeO2)a(SbOx)b (a = 0.6-0.8, b = 0.6-0.8) system.

Neutron diffraction measurements of high purity (SnO2)100(CeO2)a(SbOx)b samples were performed with HERMES installed at JRR-3M in JAEA (Tokai) [5]. Neutron wavelength was 1.8204(5)A. Diffraction data were collected in the 2 theta range from 20 to 157 deg in the step interval of 0.1 deg. The diffraction data obtained were analyzed by the combination technique of Rietveld analysis using a computer program RIETAN-FP [6] and a maximumentropy method (MEM)-based pattern fitting. MEM calculation was carried out using a computer program PRIMA [7].

The neutron diffraction patterns of (SnO2)100(CeO2)a(SbOx)b (a = 0.6-0.8, b = 0.6-0.8) samples showed larger peak widths compared to that of pure SnO2. All the reflection peaks of these samples were indexed by a tetragonal symmetry (P42/mnm, No.136). The assumed structure model was as follows: Sn, Ce, and Sb atoms occupy 2a sites (0, 0, 0) and O

atoms occupy 4f sites (x, y, 0) (x = $y \sim 0.306$) [1] with isotropic atomic displacement parameters. The lattice parameters and unit cell volume increased with increasing Ce and Sb contents, suggesting the introduction of larger Ce4+(0.97A) and Sb3+(0.76A) ions [8] into Sn4+ (0.69A) sites. Figure. 1 shows the equicontour surfaces $(0.05 \text{fm}/\text{A}^3)$ of scattering amplitude of (SnO2)100(CeO2)0.8(SbOx)0.8. Not only 2a (Sn, Ce, Sb) sites but also 4f (O) sites showed nonspherical equicontour surfaces with larger distributions (compared to pure SnO2), suggesting the disturbed atomic arrangements on the 2a and 4f sites by introducing Ce and Sb atoms into Sn sites.

References

[1] M. Batzill and U. Diebold, Progress in Surface Science, 79, 47 (2005).

[2] T. Maekawa, C. Minagoshi, S. Nakamura, K. Nomura, and H. Kageyama, Chemical Sensors, 24, 19 (2008).

[3] K. Nomura, H. Kageyama, T. Maekawa, C. Minagoshi, S. Nakamura, and T. Ito, ISSP-NSL activity report, NO.483.

[4] K. Nomura, H. Kageyama, T. Maekawa, C. Minagoshi, H. Miyazaki, and Y. Kawabata, ISSP-NSL activity report NO.865.

[5] K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani, and Y. Yamaguchi, Jpn. J. Appl. Phys., *37*, 3319 (1998).

[6] F. Izumi and K. Momma, Solid State Phenom., 130, 15 (2007).

[7] F. Izumi and R.A. Dilanian, in: Recent Research Developments in Physics, vol.3, Transworld Research Network, Trivandrum, 2002, p.699.

[8] R.D. Shannon, Acta Cryst., B51, 751 (1976).

Fig. 1. Equicontour surfaces (0.05fm/A^3) of scattering amplitude of (SnO2)100(CeO2)0.8(SbOx)0.8

Effect of Transition-Metal Substitution on Crystal Structure and Ferroelectric Property of Bi4Ti3O12-Based Oxide

Yasushi Idemoto, Naoto Kitamura and Takashi Iiyama Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science

As a ferroelectric for non-volatile Ferroelectric Random Access Memory, Bi4xLnxTi3O12-based materials (Ln: rare earth element) have drawn much attention because of the high remanent polarization, low coercive field and good fatigue characteristics. Recently, we have focused on these ferroelectric oxides, and have investigated the crystal structures by using neutron diffractions. As a result, it was demonstrated that TiO6 octahedra in the crystals distorted considerably and the spontaneous polarization calculated from the atomic positions corresponded to the remanent polarization measured by using a ferroelectric test system. In addition, we also reported that ferroelectric properties of the Bi4-xLnxTi3O12 were much improved by a partial substitution of a transition metal, such as Mo, for the Ti site. However, an influence of the transition metal doping on the crystal structure is still obscure.

From such background, we measured neutron diffraction patterns of (Bi,La)4(Ti,Mo)3O12 and (Bi,Nd)4(Ti,Mo)3O12, and then analyzed their crystal structures by the Rietveld method.

We synthesized (Bi,La)4(Ti,Mo)3O12 and (Bi,Nd)4(Ti,Mo)3O12 by means of a conventional solid-state reaction. Preliminary phase identifications were carried out by powder X-ray diffraction measurements. The metal compositions and valences were evaluated by ICP and XAFS(KEK PF), respectively. We also evaluated the ferroelectric properties by P-E hysteresis loops and dielectric measurements. Neutron diffraction patterns of the products were measured at room temperature in air by HER-MES installed at JRR-3.

X-ray diffraction patterns confirmed that all the Mo-substituted samples had a single phase of the layered perovskite-type structure, which was the same structure as the (Bi,Ln)4Ti3O12. Their analytical metal compositions were essentially equal to the nominal ones, and Mo at the Ti site was supposed to be hexavalent based on the results of XANES measurements. From the P-E hysteresis loops, it was demonstrated that Mo substitution enhanced the remanent polarization regardless of the rare earth element. It was also found that a phase-transition temperature from the ferroelectric state to the paraelectric one (i.e., Curie temperature) became lower by the partial substitution. Such a change in the ferroelectric properties suggests that the crystal structures were varied significantly by substituting Mo for Ti.

In order to clarify how the Mo substitution affected the crystal structure, we performed the Rietveld analysis using the neutron diffraction patterns. As for all the prepared (Bi,Nd)4(Ti,Mo)3O12, the structural parameters were well refined by assuming a single phase of the layered peroveskite-type structure (S. G.; B11n). From the parameters, we calculated distortions (quadratic elongations and bond angle variances) in the crystals, and then clarified that the distortions around the (Ti,Mo) sites increased slightly by the partial substitution of Mo. Based on the results, it can be considered that a higher distortion in the Mo-substituted samples is one of the reasons for the improvement of the ferroelectric properties.

Acoustic phonon softening in tetragonal BiVO₄

Izumi Tomeno,^A Naomi Sato,^A Yoshinosuke Sato,^A Kunihiko Oka,^B YorihikoTsunoda^C ^AAkita Univ., ^BAIST, ^CWaseda Univ.

Bismuth vanadate BiVO₄ undergoes a second-order ferroelastic phase transition at T_c =525 K.¹ The high-temperature paraelastic phase has a body-centered tetragonal scheelite structure with a centrosymmetric space group $I4_1/a$ (C_{4h}^6).

We studied the TA phonon propagating on the (001) plane polarized on this plane in BiVO₄ above T_c =525 K. The energies of the TA phonon dispersion curve along $[0.7\xi, \xi, 0]$ are slightly lower than those along $[\xi, \xi, 0]$, indicating that the acoustic symmetry direction deviates from the highsymmetry $[\xi, \xi, 0]$ direction. The deviation is related to the fact that the oxygen site at the tetrahedral VO₄ has the lowest site symmetry C_1 above T_c .

The present study shows the considerable softening of the TA phonon mode along $[0.7\xi,\xi,0]$ in the range $\xi < 0.2$. Figure 1 shows the temperature dependence of the TA phonon mode along the $[0.7\xi, \xi, 0]$ direction. The TA phonon branch along $[0.7\xi, \xi, 0]$ is almost temperature independent between 673 and 873 K. Below 673 K, the TA phonon curve in the range $0 < \xi < 0.2$ shifts downward with decreasing temperature. In Fig.1 the dashed lines around $\xi = 0$ represent the extrapolations of the sound velocities determined by Brillouin scattering experiments.² The sound velocity $v_{min} \approx$ 8.2×10 m/s at T_c indicates an extreme flat TA dispersion in the vicinity of the zone center. The extrapolated intercept of the observed TA branch at 538 K with the horizontal axis gives a upper bound of the wave vector q = [0.013, 0.019, 0] for the extreme flat dispersion region. The TA phonon branch along $[0.7\xi, \xi, 0]$ at 538 K should have a significant upward cur-On the vature at the small *q* range. other hand, the TA phonon mode along $[\xi, 0.176\xi, 0]$ exhibits a hardening with decreasing temperature toward T_c . This tendency is the normal behavior in an anharmonic lattice.

An elastic central peak emerges at $[0.7\xi, \xi, 0]$ in addition to the soft TA mode. The width of the central peak is comparable to the instrumental resolution. We found out that the central-peak intensity for $q = [\xi, \xi, 0]$ is significantly higher than that for $q = [0.7\xi, \xi, 0]$. The elastic diffuse scattering distributed along $[1,\bar{1},0]$ suggests that the narrow central-peak at $[0.7\xi, \xi, 0]$ has no direct connection the softening of the TA mode. A possible interpretation is that static or quasi-static defects appear along $[\xi, \bar{\xi}, 0]$ with decreasing temperature toward T_c .

¹ J.D. Bierlein and A. W. Sleight, Solid State Commun. 16, 69 (1975).

² H. Tokumoto and H. Unoki, Phys. Rev.B27, 3748 (1981).

Fig. 1. Temperature dependence of TA mode along $[0.7\xi, \xi, 0]$

Dependence of Crystal Structure and Protonic Conduction on Compositions in Gallate-Based High Temperature Protonic Conductors with Layered Structures

Yasushi Idemoto and Naoto Kitamurra Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science

Solid oxide fuel cell, which is socalled SOFC, can be regard as a new and clean energy source, and has been widely investigated in recent decades. As an electrolyte of the SOFC, LaBaGaO4-based hightemperature protonic conductors with a layered structure have drawn much attention, because of the high conductivity, high ionic transport number and high chemical stability against ambient acid gases, like CO2. In the proton conductors, a partial substitution of an aliovalent cation for the host cation introduces some defects, such as an oxygen vacancy and an interstitial proton. Diffusions of these defects through the crystals dominate the proton-uptake and conduction processes at elevated temperature. Thus, in order to understand the protonic conduction mechanism, it is important to investigate the crystal structures, especially the sites and the occupancies of the oxygen and proton. At this moment, however, there is not sufficient knowledge on the crystal structures of the LaBaGaO4 system.

In this study, neutron diffraction patterns of La1-xBa1+xGa1-yMgyO4-d with a layered structure were measured with HER-MES installed at JRR-3, and then the crystal structures were analyzed based on the Rietveld method by using the Rietan-FP program.

La1-xBa1+xGa1-yMgyO4-d(x= $0^{-}0.1$, y= $0^{-}0.05$) were synthesized by a conventional solid-state reaction using each metal oxide or carbonate as a starting material. Phase identifications of the samples were carried out with powder X-ray diffraction measurements. We also investigated the electrical conductivities at the temperature range from 573 to 1173 K under var-

ious PO2 and PH2O, and then discussed the protonic-conduction properties at the elevated temperature. Neutron diffraction measurements of the samples were performed in order to investigate the crystal structure in detail.

From X-ray diffraction patterns, it was indicated that La1-xBa1+xGa1-yMgyO4-d synthesized in this work had a single phase of a layered structure regardless of the composition, and a change of the lattice constants reflected a difference of the ionic radii of the constituent cations. Conductivity measurements revealed that LaBaGaO4 began to exhibit protonic conduction under moisturized conditions at high temperature by substituting Ba and Mg for La and Ga, respectively.

Rietveld analyses using neutron diffractions indicated that all the La1-xBa1+xGa1yMgyO4-d had an orthorhombic layered structure (S. G.; P212121) in air. From the refined structure parameters, it was found that atomic displacement parameters of the oxygens were larger than those of the other constituent elements. This suggests that oxygen vibrations play an important role for the protonic conduction, because the proton can be considered to diffuse via a hydrogen bond in the case of the hightemperature protonic conductors. It was also clarified that the oxygen amounts of La1-xBa1+xGa1-yMgyO4-d which were estimated from the refined occupancies, were larger than those predicted from the electroneutrality condition; that is, 4-d=4-x/2y/2. This may be due to a progress of a hydration reaction, which can be described as ger-Vink notation; below with the Kr (1/2)Vo..+(1/2)H2O(g) + (1/2)Oox -> <-

OHo.

where Vo.. , Oox and OHo. represent oxygen vacancies, O2- at the O2- sites and an interstitial proton coordinating an oxide ion, respectively.

1-1-27

Direct Observation of Adsorbed Layer on Metal Surface Using Neutron Reflectometry

Tomoko Hirayama^A, Takashi Torii^A, Takashi Matsuoka^A, Kazuko Inoue^B, Masahiro Hino^C, Dai Yamazaki^D ^ADoshisha University, ^BWaseda University, ^CKyoto University, ^DJAEA

Lubricants are generally used to achieve low friction on sliding surfaces in many kinds of machine components. It is reported that additives in lubricant form some adsorbed layers on sliding surface. Though several researches on relationship between the adsorbed layers and frictional properties have been conducted, there are no reports on nano structure at solid-liquid interface through direct observation in tribology field.

In this paper, nano structures at solidliquid interfaces were analyzed by neutron reflectometry. The neutron can penetrate into almost all metals, and the reflectometry is currently used to analyze the vertical structure, such as density and thickness at the target surface or interface. The instruments we used were neutron reflectometers 'MINE' and 'SUIREN' in Japan Atomic Energy Agency (JAEA).

We prepared three kinds of metal surfaces, iron, copper and aluminium, on ultra-flat silicon blocks by physical deposition. We analyzed each target surface using neutron reflectometry in air, in base oil (poli-alphaolefin) and in base oil with an additive (acetic acid). For the case that the metal surfaces were soaked in base oil with the additive, the interferential fringes in reflectivity profiles became narrower than the both cases that the surfaces were in air and in base oil only. It means that the adsorbed layers of additive formed on metal surfaces. Fitting operation along Parratt's theory showed that the thickness of adsorbed layer was about 2 or 3 nm. Friction coefficients of the metal surfaces considerably decreased when the additive was added in the base oil. We conclude that nano structure of interface between metal surface and lubricant considerably affects friction property under boundary lubricated condition and then neutron reflectometry is a very helpful method for tribology work.

Fig. 1. Reflectivity profiles from copper surface

Neutron Powder Diffraction Study of Lithium Battery Electrode Materials with Tunnel Structure

N. Kijima(A), J. Akimoto(A), K. Kataoka(A,B)

(*A*) National Institute of Advanced Industrial Science and Technology (AIST), (B) University of Tsukuba

 α -MnO2 has a hollandite type structure comprising double chains of MnO6 octahedra forming (2×2) tunnels. At present, only α -MnO2 is known to have a tunnel structure without any large stabilizing cations in its tunnel cavity, whereas the other porous manganese oxides, e.g., romanechite (2×3) and todorokite (3×3) , contain some large stabilizing cations in their tunnels. The open-tunnel structure of α -MnO2 makes it attractive for an application as an electrode material for lithiumion secondary batteries [1-3]. To clarify the structural properties of a Li inserted α -MnO2 specimen, neutron diffraction investigations have been made in this work.

An α -MnO2 specimen was prepared by the precipitation method using ozone oxidation [1,2]. A Li inserted α -MnO2 specimen was obtained by soaking the parent α -MnO2 powder in a mixed solution of LiOH and LiNO3 [2].

Neutron powder diffraction data were collected at room temperature on the HER-MES powder diffractometer installed at the JRR-3M research reactor of the Japan Atomic Energy Agency. The specimens were contained in a cylindrical vanadium cell with an inner diameter of 10 mm. Incident neutrons with a fixed wavelength of 1.8204(5) angstroms were obtained by a vertically focusing (331) Ge monochromator. The powder diffraction data were measured over a 2 theta range of 7-157 degrees with a step interval of 0.1.

The diffraction data were analyzed by the Rietveld method with RIETAN-2000, and the nuclear scattering density distribution of specimens were visualized by the Maximum-entropy-method based Pattern Fitting (MPF).

Figure 1 depicts the Rietveld refinement

patterns and the nuclear scattering density distribution images of Li inserted α -MnO2 specimen. These images clearly show the Li and O atoms in the tunnel space.

The Li inserted α -MnO2 specimen showed a good charge-discharge property as the cathode material, although the parent α -MnO2 specimen showed a poor discharge property [2]. These facts suggest that the presence of stabilizing atoms or molecules within the (2 × 2) tunnel of a hollandite-type structure is necessary to facilitate the diffusion of Li ions during cycling.

References

[1] N. Kijima et al., J. Solid State Chem. 177 (2004) 1258.

[2] N. Kijima et al., J. Solid State Chem. 178 (2005) 2741.

[3] N. Kijima et al., Solid State Ionics 180 (2009) 616.

Fig. 1. Neutron powder diffraction patterns and nuclear scattering density distribution images of Li inserted α -MnO2 specimen.

Fractal geometry of porous silica studied by SANS experiment

Hiroyuki Mayama Hokkaido University

Very recently, it has been understood that fractal is a promising approach to design functional materials because fractal geometries theoretically poses infinity length and surface area, and zero net volume. In relation, fractal geometry of porous silica samples, which were prepared under designed conditions, were investigated by SANS experiments. We have already created Menger sponge-like fractal bodies (fractal porous silica) and established the experimental strategy how fractal dimension D can be modified. We found that the Menger sponge-like fractal geometries were created in porous silica with D = 2.5-2.7 in the scale range between 50 nm and 5 um in which connected network structures of pore exist. In this experimental strategy, wax particles of alkylketene dimer (AKD) with flower-like surface structure (particle diameter ca. 10 um, thickness of a petal ca. 100 nm) were utilized as template particles and tetramethyl orthosilicate (TMOS) was used to fill the space between the particles and polymerized by a sol-gel synthesis of TMOS. After calcination of the reaction products, fractal porous silica samples were obtained. However, the distribution of the porous network structure, i.e., scale range of fractal geometry, was limited in the scale range of 50 nm ~ 5 um. To develop the network structure in smaller scale range less than 50 nm, we utilized polymer chains such as polyethylene glycol (PEG) and calf thymus DNA as other type of templates to make smaller pores. We systematically prepared fractal porous samples at different concentrations of PEG and DNA, and also different molecular weight of PEG. As a result, we found an experimental strategy to develop the pore network structure in smaller scale (less than 50 nm). Fig. 1 is a typical example how SANS profile depends on sample preparation. The profiles in the range of $0.01 \ ^{\sim} 0.11/A$ are almost same, but, the profiles in lower Q range less than 0.011/A reflect the condition of templates. With an increase of the concentration of PEG20000, it was observed that the profile in lower Q range goes up. We thus found a possibility that the profiles may obey a power law of scattering intensity I (Q) $\ ^{\sim}$ I^(-D) under a suitable condition. Along this strategy, we would like to create fractal porous silica in which D is maintained in several nanometer to several micrometer.

Fig. 1. SANS profiles of fractal porous silica using wax particles, calf thymus DNA and PEG20000 as templates

Analysis of Hydrogen Molecules Chemisorbed on Cu Ions Confined in Solid Nanospace

T. Ohkubo(A), K. Takahara(A), A. Itadani(A), O. Yamamuro(B), and Y. Kuroda(A) (A) Fac. Sci., Okayama Univ., (B) ISSP-NSL, Univ. Tokyo

We have reported specific adsorption properties of gas molecules on copperion-exchanged MFI-type zeolite (CuMFI). Specifically, monovalent Cu ions exchanged in MFI zeolite can strongly interact with an adsorbed molecule even at room temperature. In our previous report, we showed the possibility from the IR measurements which indicated the existence of the specific adsorption sites on CuMFI treated at 873 K [1]. However, it is quite difficult to investigate the adsorption phenomena with ordinary methods and, herein, we performed the inelastic neutron scattering (INS) measurements for CuMFI adsorbed by hydrogen and tried to elucidate the adsorption sites to interact strongly with hydrogen.

INS experiments were carried out on hydrogen-chemisorbed CuMFI by using AGNES spectrometer. At first, we measured the spectra of original CuMFI which was evacuated at 873 K in a quartz tube and then transferred into an aluminum holder in a helium-exchanged globe box. Hydrogen molecules were directly installed into the holder at 0.1 MPa and 77 K through the center stick. To obtain the INS spectrum of chemisorbed species, we cooled down to 8 K and evacuated physically adsorbed molecules and the molecules in the bulk phase.

Fig. 1 shows the difference INS spectrum of adsorbed hydrogen molecules at 8 K. We could observe two kinds of INS bands at 1.08 and 1.72 cm-1, respectively. Eckert et al. assigned the INS band of hydrogencoordinated tungsten complex observed at 0.95 cm-1 as the rotational tunneling of side-on-type coordinated hydrogen [2]. Therefore, these two bands strongly indicate the existence of two kinds of strong or chemical adsorption sites on the CuMFI surface. However, our results did not agree with the band positions observed at 0.80 and 1.37 cm-1 reported by Georgiev et al. by using CuMFI [3]. These differences may be due to the differences of surface composition such as Si/Al ratio or the variation of local structure around a monovalent Cu ion. The present results revealed that the two kinds of adsorption sites can act as specific sites for hydrogen whose interaction strength is similar to that observed for side-on-type coordinated hydrogen of a complex.

Fig. 1. Difference INS spectrum of adsorbed hydrogen on CuMFI.

This is a blank page.

1. 中性子散乱 2)磁 性

1. Neutron Scattering 2) Magnetism

This is a blank page.

Neutron Single-Crystal Diffraction Studies on HoB_2C_2 under High-Pressure

H. Yamauchi, T. Osakabe, E. Matsuoka[†] and H. Onodera[†]

Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195, Japan [†]Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

The tetragonal HoB₂C₂ shows two successive transitions. Firstly, the sinusoidally modulated antiferromagnetic (AFM) order characterized by $\mathbf{k}_{\rm L} = (1+\delta, \delta, \delta') \quad (\delta = 0.11,$ $\delta' = 0.04$) develops at $T_{\rm N} = 5.9 \,{\rm K}$ with decreasing temperature, and then the antiferroquadrupolar (AFQ) order occurs at lower temperature of $T_{\rm Q} = 4.5 \, {\rm K}^{1}$. This fact indicates that the AFQ interactions are comparable with the AFM interactions in HoB_2C_2 . Below $T_{\rm O}$, the unmodulated AFM structure competitively coexists with the AFQ ordered structure and shows the 90° alignment along the *c*-axis characterized by the wave vectors of $k_1 = (1, 0, 0)$ and $k_2 = (0, 1, 1/2)$. This competitive condition of interactions in HoB_2C_2 arouses our interests in pressure-induced phenomena. We therefore performed the first high pressure experiments to investigate pressure effects on HoB₂C₂ using neutron singlecrystal diffraction technique. We succeed in all experiments using an opposed pair of large anvils, named "hybrid-anvil cell"²⁾ and a McWhan-type pressure cell. The neutron diffraction measurements were carried out on TAS-1 in the JRR-3 reactor hall.

Figure 1 shows the magnetic P - T phase diagram of HoB_2C_2 up to 10 GPa. The phase boundaries are estimated from the pressure dependence of the $T_{\rm N}$, $T_{\rm Q}$ and the magnetic structure at 1.4 K. In the figure, T_{100} and $T_{011/2}$ are the growth temperatures of magnetic Bragg peaks of (1,0,0) and (0,1,1/2), respectively. Since the k_1 component in the AFM structure below T_Q , which is observed in most of the RB_2C_2 system including GdB_2C_2 of L=0, reflects the fundamental magnetic interactions in HoB_2C_2 , the appearance of the k_2 component strongly indicates the existence of the competitive AFQ structure. Thus, we can assume that $T_{011/2}$ is closely related to $T_{\rm Q}$. The $T_{\rm N}$ is enhanced monotonically with

Figure 1: Magnetic pressure-temperature phase diagram of HoB_2C_2 up to 10 GPa.

increasing pressure up to 10 GPa. The $T_{\rm Q}$ is also enhanced up to $\sim 2.1 \,\text{GPa}$ by pressure. But above 2.1 GPa, no magnetic (0, 1, 1/2)peak could be observed at 1.4 K. Therefore, we suppose that the $T_{\rm Q}$ is suppressed gradually above 2.1 GPa, and the AFQ order disappears in the range of 3 GPa < P < 5 GPa. Above 4.9 GPa at 1.4 K, we observed characteristic appearance of magnetic peaks which were completely different from those in the sine-wave phase and AFM+AFQ coexistent phase. At around 5 GPa, magnetic peaks characterized not only by $\mathbf{k}_{\rm L}$ (or $(1+\delta, \delta, 0)$) but also by k_1 were observed. On the other hand, above 7.9 GPa, magnetic peaks for $k_{\rm L}$ disappeared, and intense magnetic reflections only for k_1 were observed. Consequently, we conclude that new magnetic phases induced by pressure exist as shown by PI1 and PI2 in Fig. 1. Magnetic structure models in the new phases are now under consideration.

References

- K. Ohoyama *et al.*: J. Phys. Soc. Jpn. <u>69</u> (2000) 3401.
- T. Osakabe *et al.*: Rev. High Pressure Sci. Technol. <u>20</u> (2010) 72 [in Japanese].

原子炉:JRR-3 装置:TAS-1(2G) 分野:中性子散乱(磁性)

Influence of Al Substitution on Magnetic Correlation of the Two-Dimensional Triangular Lattice Antiferromagnet CuCrO₂

R. Kajimoto, M. Matsuda¹, K. Uto² and T. Okuda²

J-PARC Center, JAEA, Tokai, Ibaraki 319-1195

¹Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

²Department of Nano-Structures and Advanced Materials, Kagoshima University, Kagoshima 890-0065

CuCrO₂ has triangular lattice layers of magnetic Cr^{3+} ions separated from each other by non-magnetic layers of Cu⁺ ions, which makes this compound a quasi twodimensional (2D) triangular lattice antiferromagnet with S = 3/2. The Cr spins form a proper screw structure below $T_{\rm N} = 26$ K, whose wave vector is (q, q, 0) with $q \approx 1/3$.¹⁾ Recently, it was found that substitution of the inter-layer Cu⁺ ions with Ag⁺ ions enhances the two-dimensionality in the magnetic correlation, and may induce some unusual magnetic excitations.²⁾ In contrast, substitution of Cr^{3+} ions with non-magnetic Al^{3+} ions directly should affects the intra-layer magnetic interactions. In the present study, we performed neutron diffraction study on powder samples of $CuCr_{1-x}Al_xO_2$ to investigate the Al substitution effect on the magnetic correlation. The measurements were performed using TAS-2 and LTAS with neutron energies of 14.7 meV and 3.5 meV, respectively.

Figure 1(a) shows x dependence of the diffraction profile measured at 6 K on TAS-2. The magnetic Bragg reflections are drastically suppressed by the Al substitution, and they almost disappear at x = 0.15. In stead, there remains a broad skewed profile. The skewed profile should reflect the development of a 2D correlation, which is similar to $(Cu,Ag)CrO_2$ ²⁾ In $(Cu,Ag)CrO_2$, the 2D magnetic correlation was dynamical and develop well above $T_{\rm N}$. This was proved by the difference between temperature (T) dependence of a magnetic peak intensity measured on TAS-2 with a coarse energy resolution ($\Delta E = 1.2 \text{ meV}$) and that measured on LTAS with a high energy resolution ($\Delta E =$ 0.2 meV).²⁾ In order to examine this point on $CuCr_{1-x}Al_xO_2$, we performed similar measurements. Figure 1(b) compares T dependences of a magnetic peak measured on TAS-2 and LTAS. The difference between the two data is quite small. These facts indicate that the two-dimensionality in the magnetic correlation is enhanced by the Al substitution similar to the Ag substitution, but its energy scale is smaller than that in (Cu,Ag)CrO₂.

Figure 1: (a) Neutron powder diffraction profiles of $\operatorname{CuCr}_{1-x}\operatorname{Al}_x\operatorname{O}_2$ at T = 6 K on TAS-2. Indices with a subscript N and a subscript M indicate nuclear and magnetic reflections, respectively. (b) Temperature dependences of the peak intensity of the qq_{0M} peak in the x = 0.10 sample measured on TAS-2 and LTAS.

References

- H. Kadowaki et al.: "J. Phys.: Condens. Matter", <u>2</u>, 4485 (1990); M. Soda et al.: "J. Phys. Soc. Jpn.", <u>78</u>, 124703 (2009).
- T. Okuda et al.: "J. Phys. Soc. Jpn.", <u>78</u>, 013604 (2009).

原子炉: JRR-3 装置: TAS-2(T2-4) · LTAS(C2-1) 分野: 中性子散乱(磁性)

Pressure-Temperature Phase Diagram of Filled Skutterudite PrFe₄P₁₂

T. Osakabe, H. Yamauchi, K. Kuwahara¹, K. Iwasa², Y. Aoki³, H. Sato³ and M. Kohgi³

Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195 ¹Graduate School of Science and Engineering, Ibaraki Univ., Mito, Ibaraki 310-8512 ²Department of Physics, Tohoku Univ., Sendai, Miyaqi 980-8578

³Department of Physics, Tokyo Metropolitan Univ., Hachioji, Tokyo 192-0397

[•] Department of Physics, Tokyo Metropolitan Univ., Hachioji, Tokyo 192-0397

Filled skutterudite compound $PrFe_4P_{12}$ shows a Γ_1 -type electronic mulitipolar order below $T_A = 6.5$ K at ambient pressure ¹⁾. The propagation vector of this ordered phase (Aphase, hereafter) is $\boldsymbol{q} = (1, 0, 0)$, which is closely related with the nesting property of the Fermi surface ²⁾. Applied pressure suppresses the A-phase and induces an insulating phase above 2.4 GPa at low temperature ³⁾.

In the previous neutron diffraction experiments below 4.3 GPa, we directly observed the pressure-induced antiferro magnetic ordered phase (M-phase, hereafter) and found that the M-phase corresponds to the insulating phase. The propagation vector of the M-phase is identical with that of the Aphase. The magnetic moment at 1.5 K is approximately 2.0 $\mu_{\rm B}$, which is consistent with the dipole moment in the crystal-field (CF) ground state of the Γ_1 - $\Gamma_4^{(1)}$ with $d \sim 1$ quasiquartet ^{4,5)}.

Recently, we have performed neutron diffraction experiments up to 10.5 GPa using the TAS-1 spectrometer in JRR-3 to investigate the stability of the M-phase against applied pressure. The experimental results are summarized in fig. 1 as a pressuretemperature phase diagram together with the data in ref. $^{3)}$. As clearly shown in fig. 1, the M-phase is highly stabilized by applied pressure especially above 4 GPa. The Néel temperature at 10.3 GPa reaches to about 50 K, which is the highest magnetic transition temperature in the Pr compound reported so far. The mechanism of the stabilization of the M-phase by appliend pressure is an open question. On the other hand, the magnetic moment above 4 GPa also increases gradually and reaches about 2.3 $\mu_{\rm B}$ at 10.3 GPa. The dipole moment at 10.3 GPa is well reproduced when the Γ_{23} state is located in the lowlying CF state in addition to the Γ_1 - $\Gamma_4^{(1)}$ with $d \sim 1$ quasi-quartet state. This CF structure is agree with the theoretical calculation by considering the strong *p*-*f* hybridization effect and the point charge effect ⁵). The highlydegenerated CF state in the low energy region is supposed to be responsible for the heavy electron state in this compound.

Figure 1: Pressure-temperature phase diagram of $PrFe_4P_{12}$.

References

- Y. Aoki, T. Namiki, T. D. Matsuda, K. Abe, H. Sugawara, and H. Sato :, "Phys. Rev. B", <u>65</u>, pp. 064446-1-7 (2002).
- H. Harima, K. Takegahara, S. H. Curnoe, K. Ueda
 "J. Phys. Soc. Jpn.", <u>71</u> Suppl. pp. 70-73 (2002).
- H. Hidaka, I. Ando, H. Kotegawa, T. Kobayashi, H. Harima, M. Kobayashi, H. Sugawara and H. Sato :"Phys. Rev. B", <u>71</u>, pp. 073102-1-4 (2005).
- A. Kiss and Y. Kuramoto :"J. Phys. Soc. Jpn.", <u>74</u>, pp. 2530-2537 (2005).
- Y. Kuramoto, A. Kiss, J. Otsuki and H. Kusunose :"J. Phys. Soc. Jpn.", <u>75</u> Suppl. pp. 209-214 (2006).

原子炉: JRR-3 装置: TAS-1(2G) 分野: 中性子散乱(磁性)

Spin Waves in MnP

S. Yano(1), M. Nishi(2), M. Matsuura(3), K. Hirota(3) and J. Akimitsu(1) (1)Department of Physics and Mathematics, Aoyama-Gakuin Univ., 5-10-1 Fuchinobe, Sagamihara(2) Institute for Solid State Physics, The Univ. of Tokyo 106-1 Shirakata, Tokai 319-1106(3)Department of Earth and Space Sceince, Graduate School of Science Osaka University 1-1 Machikaneyama-cho,Toyonaka-shi,Osaka

Manganese phosphide MnP is a ferromagnetic intermetallic compound below TC = 291K, and it transforms into a proper screw state at T* = 47K.

The crystal structure is a slightly distorted NiAs structure with the lattice parameters of a = 5.916 , b = 5.260 , c = 3.173 at room temperature. In the ferromagnetic state, the easy-axis of the magnetization is the c-axis. In the proper screw state, the spin rotates in the b-c plane with a propagation vector δ = 0.117a* along the a-axis. One of our interests of MnP is the mechanism of transition from ferromagnetism to helimagnetism which had not been explained by theoretical viewpoint. In order to elucidate the mechanism, the information of spin wave in the whole Brillouin zone is crucially important.

The ferromagnetic spin-waves along the three principal axes had been measured by Todate et al[1]. They reported that the dispersion relation along the a-axis exhibits anomalous wave vector and temperature dependence, and also the quadratic q dependence was observed both along the b-and c-axes. In the proper screw state, spin-waves along the a- and b-axes had been measured by Tajima et al[2]. They reported the anomalous jump around T* along the a-axis which may be related to 3 δ .

In order to obtain the spin wave dispersion relations, we performed the neutron inelastic scattering experiments at tripleaxis spectrometer PONTA (5G), JRR-3M reactor in JAERI (Tokai).

The single crystal of MnP, whose size is 9mm $\phi \times 40$ mm, was grown by the Bridgman method.

The spin wave dispersions have been mearsured along the a-axis at 12 K and 50K, as shown in Fig1. We could observe the spin wave dispersions along the a-axis, however, anomalous jump around T* which Tajima et al reported was not found. It is probably broadened dispersion due to itinerant magnetism.

In order to obtain the spin waves in the whole Brillouin zone, further measurements of spin waves at higher energy ((100 meV)) and lower energy ($0 \sim 2 \text{ meV}$) are now in progress.

References

[1] Y Todate et al.: Jou Phys Soc Jpn. 56 36 (1987).

[2] K Tajima et al.: Jou Mag Mag Mat. 15-18 373-374 (1980).

Fig. 1. Spin wave relations along the a-axis

Antiferromagnetic fluctuations in $Fe(Se_{1-x}Te_x)_{0.92}(x = 0.75, 1)$

S. Iikubo¹, M. Fujita², S. Niitaka³, and H. Takagi³

¹Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
 ² Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
 ³RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan

Since the discovery of superconductivity in the FeAs systems, intensive studies on related superconductors including iron group have been reported. Although the related system shows the AF ordering in the parent materials, recent neutron diffraction measurements reported that the ordered magnetic structure of Fe(Se_{1-x}Te_x)_y is quite different from that of other FeAs materials[1]. Therefore, the dynamical magnetic properties of the parent material FeTe_{0.92} and superconductor Fe(Se_{0.25}Te_{0.75})_{0.92} have been investigated by inelastic neutron scattering.

Figure 1 (a) shows constant energy scans with $\omega = 2$ (89 K), 6 (89 K and 65 K) and 8 meV (65 K) for FeTe_{0.92}, which shows the AF ordering and a structural transition from a high-temperature tetragonal phase to a low-temperature monoclinic phase at ~ 70 K. We were able to observe the magnetic fluctuations as a broad peak around 0.9 Å⁻¹. The scattering intensities become weak as energy increases, especially below T_N . The peak centers are almost constant as the function of ω , which is consistent with what has been reported for other FeAs based materials.

Next, we will focus on the peak center for Fe(Se_{0.25}Te_{0.75})_{0.92}, which shows an appearance of bulk superconductivity below $T_c \approx$ 8 K. The energy evolution of the magnetic excitation spectra at 3.5 K is shown in Fig. 1 (b). For low energies ($\omega \leq 4$ meV), the magnetic excitations are located at $|Q| \approx$ 0.9 Å⁻¹, which is close to the one for pure FeTe_{0.92}. However, as ω increases, the peak centers increase substantially up to $|Q| \approx$ 1.2 Å⁻¹ at $\omega \approx$ 10 meV. The measurements reported here show conclusively that a significant evolution occurs in the magnetic excitation spectra when Se is substituted for Te. We would like to note that the reciprocal lattice point $|Q| \approx 1.2 \text{ Å}^{-1}$ is close to the wave vectors Q = (0.5, 0.5, 0) (|Q| =1.17 Å⁻¹) and Q = (0.5, 0.5, 0.5) (|Q| = 1.28 $Å^{-1}$), which match with the 2D nesting vector between the cylinder-like electron and hole Fermi surfaces like FeAs system. We speculate that the peak shift is related with the appearance of itinerant character of Fe magnetic moment which could be introduced by Se doping in the parent material FeTe_{0.92}. Our results show that substituting Se for Te may cause the system to possess possible magnetic fluctuations with the 2D nesting vector Q = (0.5, 0.5). [1]W. Bao et al. Phys. Rev. Lett. 102 (2009) 247001.

Fig. 1. (a) Inelastic scattering intensity for $FeTe_{0.92}$. (b) Inelastic scattering intensity for $Fe(Se_{0.25}Te_{0.75})_{0.92}$ at 3.5 K.

Magnetic structure in $FeTe_{0.92}$

S. Iikubo¹, M. Fujita², S. Niitaka³, and H. Takagi³

¹Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
 ² Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
 ³RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan

The discovery of Fe-based superconductor has led to intensive studies on related superconductors including iron group. They possess a FeX (X=As, Se,Te) layer in their structure and their non-doped counterparts commonly exhibit an antiferromagnetic (AF) ordering with an adjacent structural phase transition from tetragonal to orthorhombic structure. A precise understanding of the magnetic properties among the related compounds would provide a useful guideline for understanding the superconductivity.

FeTe_{0.92} shows the AF ordering at ~ 70 K with a structural transition from a hightemperature tetragonal phase to a lowtemperature monoclinic phase. Figure 1 (a) displays observed, calculated, and difference neutron diffraction patterns at 160 K. All the reflections of FeTe_{0.92} at 160 K could be indexed in the *P*4/*nmm* symmetry and structure parameters were successfully refined from the powder diffraction. Inset of Fig, 1 (a) shows Fermi surface of FeTe from non-spin-polarized calculation with crystal parameters determined by our Rietveld analysis. This result is consistent to previous study[1] proposed that the Fermi surface structure of FeSe and FeTe, which causes AF magnetic ordering characterized by the 2D nesting vector Q = (0.5, 0.5) between the cylinder-like electron and hole Fermi surfaces.

At *T* = 8 K, we observed several superlattice reflection shown in Fig. 1(b). This observation corresponds to the AF ordering with the ordering vector *Q* = (0.5,0,0.5), indicating that the magnetic unit cell is ~ $2a \times a \times 2c$, where a and c are the lattice parameters of the chemical unit cell.

Although the end compounds in $Fe(Se_{1-x}Te_x)_y$ and other FeAs based

system show quite different magnetic orderings from each other, the superconducting materials have the surprising common character of the proximity to an AF fluctuation with a 2D Q = (0.5, 0.5)[2]. This suggests that the mechanism of superconductivity in two systems may share some common features and especially that the AF correlation with 2D Q = (0.5, 0.5) may play an important role in the mechanism of superconductivity in Fe-based superconductors.

 A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78 (2008) 134514.
 S. Iikubo, M. Fujita, S. Niitaka, and H. Takagi, J. Phys. Soc. Jpn. 78 (2009) 103704.

Fig. 1. The result of the Rietvelt analysis at (a) 160 K and (b) 8 K. inset: Fermi surface of FeTe from non-spin-polarized calculation.

Component dependence of magnetic moment in MnRh alloy

Matsuoka Y., Takasaki A. *Nara Women's University*

The magnetic states and the transformation temperatures of MnRh have large component dependence, and shows large hysteresis.

In the case of MnRh alloy with 60at.%Mn, the transformation from hard-ferromagnetic-like state with CsCl structure to soft-ferromagnetic-like state with CuAu-I structure begins around 250 K and finish around 70 K, and inverse transformation begin around 250 K and finish over 400 K.

MnRh alloy with 50at.%Mn shows transformation from antiferromagnetic state to paramagnetic or antiferromagnetic state.

But detailed analysis of magnetic structure has not been performed except a few theoretical calculations.

We performed neutron powder diffraction measurements of Mn-Rh alloy with 60at.%Mn at 300 K and 15 K. The magnetic structure models of this alloy were estimated by the Rietveld analysis of neutron powder diffraction spectra.

As a result, MnRh alloy with 60at.%Mn is estimated to have ferromagnetic or antiferromagnetic structure at 300 K, and antiferromagnetic structure at 15 K. The directions of magnetic moments of Mn and Rh in CuAu-I phase are [110]. The moments of Mn and Rh are estimated to be 3.3 μ B and 1.0 μ B, respectively.

Origin of Ferroelectricity induced by Proper-screw Magnetic Structure in Multiferroic Material CuCrO2

Minoru Soda1, Kenta Kimura2, Tsuyoshi Kimura2, Masato Matsuura1 and Kazuma Hirota1

1 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, 2 Division of Material Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531

Ferroelectricity induced by a noncollinear spin arrangement in TbMnO3 has been investigated experimentally and theoretically.[1] The microscopic origin of such a ferroelectricity can be successfully explained by the spin-current and the inverse Dzyaloshinskii-Moriya mechanisms.[2] Very recently, however, spiral-magnetisminduced multiferroics where the abovementioned mechanisms are not applicable have been found in some triangular lattice antiferromagnets (TLAs). Among them, CuFeO2 and CuCrO2 with a delafossite structure show ferroelectricity induced by proper-screw spiral magnetic structures.[3] A microscopic theory which relates the variation in the metal-ligand (d-p) hybridization with the spin-orbit coupling to the electric polarization has been applied by Arima to explain the proper-screwspiral-induced ferroelectricity.[4] In the present work, the spin-polarized-neutron studies have been carried out on the multiferroic material CuCrO2 to clarify the origin of the ferroelectricity in the multiferroic TLA.

CuCrO2 undergoes an antiferromagnetic transition at TN²4 K. The ferroelectricity with P//q has been observed at temeprature T below TN²4 K. A powder neutron diffraction study reported by H. Kadowaki et al. has indicated that CuCrO2 has an out-of-plane 120 deg. magnetic structure below TN.[5] However, our neutron results demonstrate that an incommensurate proper-screw magnetic structure of CuCrO2 induces an electric polarization.

Furthermore, we have carried out spinpolarized-neutron studies with applying the electric field to clarify the relationship between the spin helicity and the electric polarization. By measuring the spin helicity of the magnetic reflection not only parallel to P but also not parallel to P, as shown in Fig. 1, we have clarified that the electric polarization of CuCrO2 can be explained not by a conventional spin-current model but by a theoretical prediction proposed by Arima. This d-p hybridization model means that the spin helicity of the properscrew magnetic structure as well as the oxygen location contribute to the ferroelectricity of CuCrO2. We have also found that the spin helicities of CuCrO2 can be reversed by the reversal of an electric field in the multiferroic phase.

T. Kimura et al., Nature 426 (2003) 55.
 H. Katsura, N. Nagaosa and A. V. Balatsky, Phys. Rev. Lett. 95 (2005) 057205.
 T. Kimura, J. C. Lashley and A. P. Ramirez, Phys. Rev. B 73 (2006) 220401(R)
 T. Arima, J. Phys. Soc. Jpn. 76 (2007) 073702.

[5] H. Kadowaki, H. Kikuchi and Y. Ajiro, J.Phys.: Condens.Matter 2 4485 (1990)

Fig. 1. Fig. 1(a) Relationship between the direction of E and Q-points. (b) E-dependence of the ratio of the spin helicity defined as (Ion-Ioff)/(Ion+Ioff) at Q-points of 0, 60. and -60 deg. 1-2-8

Spiral-plane Flop and Rearrangement of Magnetic Domain in Multiferroic Material CuCrO2

Minoru Soda1, Kenta Kimura2, Tsuyoshi Kimura2, and Kazuma Hirota1

1 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, 2 Division of Material Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531

Recently, a ferroelectricity induced by a noncollinear spin arrangement has been extensively investigated both experimentally and theoretically. Materials exhibiting such a ferroelectricity are known for "multiferroics," in which a cycloidal magnetic ordering and a proper-screw magnetic ordering have been reported. In the cycloidal magnetic ordering type such as TbMnO3, the microscopic origin of the ferroelectricity can be explained by a spin-current model or the inverse Dzyaloshinskii-Moriya (DM) mechanism. As to the proper-screw magnetic ordering type such as CuCrO2, on the other hand, Arima proposed an idea that a d-p hybridization due to the spin-orbit coupling induces the electric polarization P for such a noncollinear magnetic ordering in a lowsymmetry crystal.[1]

The compound chosen in this study is one of the multiferroic TLAs, CuCrO2, whose Cr3+ ions (S=3/2) form a triangular lattice. In CuCrO₂, ferroelectricity with P//qhas been observed at temeprature T below TN~24 K, where an incommensurate proper-screw spiral magnetic order. As in other spiral-magnetism-induced multiferroics such as TbMnO3, a first-order magnetoelectric (ME) phase transition occurs in CuCrO2, where the direction of P is flopped from the [110] to the [1-10] direction by applying H^{-5.3} T along [1-10].[2] In this study, we use a neutron scattering technique to examine the origins of the ME effects observed in CuCrO2.

We revealed that the application of magnetic fields causes a transition from the proper-screw magnetic ordered state into a cycloidal one, as shown in Fig. 1. The transition is associated with a ferroelectric polarization flop, i.e., gigantic magnetoelectric effects. Such a transition between two ferroelectric phases with different-types of spiral structures has never been observed in known multiferroics. In addition, we found that the ferroelectric character of the cycloidal phase in magnetic fields cannot be explained by the above well established mechanisms. This means that the cycloidal-induced ferroelectricity of Cu-CrO2 is distinct from that in known spiralmagnetism-induced multiferroics. Furthermore, we have found that the distribution of the magnetic domains is strongly affected by a magnetic-field-cooling procedure below a characteristic temperature T*~16 K, which contributes to the ferroelectric polarization. The direct experimental evidence that the ferroelectric polarization is controlled with the magnetic domains has never been reported.

[1] T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007).

[2] K. Kimura et al., Phys. Rev. Lett. 103, 107201 (2009).

Fig. 1. Fig. 1(a) H-dependence of the integrated intensity of magnetic reflections. (b) Spiral-plane flop from proper-screw magnetic structure to cycloidal one with increasing H.

1-2-9

Neutron diffraction study on antiferromagnetism of alkali-metal clusters in sodalite

T. Nakano¹, A. Hanazawa¹, M. Matsuura², K. Hirota², and Y. Nozue¹ ¹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ²Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Ordered magnetic states have been found in alkali-metal clusters generated in regularly arrayed nano-cages of zeolite crystals. These magnetisms are fascinating because no magnetic element is contained. The magnetic moments arise from s-electrons confined in the clusters, and the ordered magnetic states are realized by their mutual interaction. Sodalite is one of the aluminosilicate zeolites, where β -cages with the inside diameter of \simeq 7 Å are arrayed in a bcc structure. Na_4^{3+} and K_4^{3+} clusters can be incorporated in β -cages. It is known that these clusters show antiferromagnetism below respective Néel temperatures $T_{\rm N}$ = 48 and \simeq 70 K [1]. We performed neutron powder diffraction study with temperature varying between 4 and 300 K by utilizing 5G-PONTA installed at the JRR-3 Reactor of JAEA.

Figure 1 shows the 001 Bragg peak of Na clusters in sodalite measured at 4 K and 56 K. Although this Bragg peak is forbidden from the crystal structure, the peak clearly appears below the $T_{\rm N}$ of about 50 K. Therefore, this peak is assigned to a magnetic Bragg peak. The temperature dependence of the integrated intensity of this peak was well explained by phenomenological equation of an order parameter in a three dimensional Heisenberg model. We succeeded in observing also the 111 magnetic Bragg peak at 4 K. The width of these Bragg peaks are almost same as that given by the resolution of the diffract meter. Hence, the antiferromagnetism of alkali-metal clusters in sodalite can be regarded as a long-range order (LRO). This is the first direct observation of magnetic LRO by neutron diffraction in s-electron systems as far as we know. The magnetic structure is determined as a simple one where the electron spin of the body center cluster and that of the corner cluster are aligned with antiparallel. We are, however, not sure about the easy axis. We evaluated the magnetic form factor from the obtained magnetic and nuclear Bragg peaks. Recently, Nakamura *et al.* have performed *ab initio* calculations and derived maximally localized Wannier orbitals which correspond to the *s*-like electron confined in the β -cage. We calculated the form factor of their Wannier orbital and compared with our experimental results. The agreement between them was fairy good indicating that we succeeded for detecting the magnetic diffraction from the *s*-like cluster orbital of nanoclusters.

References

[1] V. I. Srdanov et al., PRL 80 (1998) 2449.

[2] K. Nakamura et al., PRB 80 (2009) 174420.

Fig. 1. 001 Bragg peak of Na clusters in sodalite measured by neutron powder diffraction at 4 K and 56 K

Non-magnetic-ion substitution in geometrically frustrated systems M2(OD)3X[M=Co,Fe,Ni,Mn; X=CI,Br]

X. G. Zheng, M. Hagihala, M. Fujihala Department of Physics, Saga University

Geometrically frustrated magnetic materials show novel magnetic properties because of their lattice geometry. The lattice geometries responsible for frustration are generally triangular lattice, kagome lattice, and pyrochlore lattice. Of particular recent interest are the rare-earth pyrochlore compound materials, in which the magnetic ions form networks of corner-shared tetrahedrons and the frustration of spin?spin interactions engenders spin ice states, unconventional spin glass states, and exotic spin liquid states.

In recent years, we identified unconventional magnetic transitions in a transition metal hydroxyhalogenide series deformed pyrochlore compounds of M2(OH)3X, where M represents a delectron transition metal magnetic ion such as Cu+2, Ni+2, Co+2, Fe+2, and Mn⁺2[,] and X represents halogen ions of Cl-1, Br-1, or I-1. Much of these metal hydroxyhalogenides were found originally in natural minerals. This material category presents a complete series for spins S=1/2to S=5/2. In particular, clinoatacamite, Cu2(OH)3Cl, showed unconventional magnetic transitions at TN1 = 18.1 K with a very small entropy release, TN2 = 6.4 K and TN3 = 6.2 K, with co-existing order and spin fluctuation. The nature of the TN1 = 18.1 K phase remains largely unknown and attracts much interest. Furthermore, it is the first example of the S = 1/2Heisenberg quantum spin on a pyrochlore lattice and the parent compound for the substituted "perfect kagome lattice" of herbertsmithite ZnCu3Cl2(OH)6, which exhibits spin liquid behavior.

The pyrochlore compounds M2(OH)3X can be viewed as alternatively stacked layers

of As kagome lattice planes and triangular lattice planes consisted by the magnetic ions. As is demonstrated in herbertsmithite ZnCu3Cl2(OH)6, substitution of the magnetic ions on the triangular lattice planes by nbonmagnetic Zn etc. can artificially produce a new kagome lattice for the magnetic ions. We have thus tried such nonmagnetic substitution in the Co2Cl(OH)3 system. We observed by magnetic susceptibility measurements that partial substitution of magnetic Co by nonmagnetic Zn drastically reduced the magnetic transition temperature. With a substitution ratio near 25% in Co3ZnCl2(OH)6 no sharp transition was seen from the magnetization data.

Therefore, we performed neutron powder diffraction experiments using samples of (Co1-xZnx)2Cl(OH)3 with x ranging from 0 to 0.4. The experiments were performed, respectively, with a wavelength of 1.8264 A using a Kinken powder diffractometer, HERMES, of the Institute for Materials Research (IMR), Tohoku University, installed at the JRR-3M reactor at the Japan Atomic Energy Research Institute (JAERI), Tokai. The collected neutron data were refined using the program Fullprof suite based on Rietveld refinement. We found that selective substitution of the Co ions on the triangular lattice planes was realized in the (Co1-xZnx)2Cl(OH)3. For x near 0.25, a kagome lattice of S=3/2 Co was realized. No magnetic transition was seen until the experimentally reachable 1.5 K, suggesting the enhanced frustration and possible spin liquid state in kagome lattice Co3ZnCl2(OH)6.

Data analysis is still in progress and the detailed results will appear in a submitted paper to a physics journal.

Low temperature magnetism and spin fluctuation in atacamite-type Ni2(OD)3Cl

M. Hagihala1, M. Fujihala1, X. G. Zheng1, Y. Oohara2 1 Department of Physics, Saga University; 2 ISSP, Univ. of Tokyo

A long-range order in magnets must reportedly be fully frozen to become static. Nevertheless, we recently obsered an exotic dynamic antiferromagnetic state in atacamite-type Ni2(OH)3Cl with a muSR study although magnetic susceptibility and specific heat measurements clearly suggested a long-range order occuring below TN=4K (1). Therefore, we further investigated this exotic state using neutron scattering.

Ni2(OH)3Cl belongs to the material category of the hydroxyhalide M2(OH)3X (M: 3d magnetic ions Cu, Ni, Co, Fe or Mn, X: Cl, Br, I), which are discovered by us to be a new geometrically frustrated materials series (2-4). Atacamitetype Ni2(OH)3Cl is the S=1 spin system on the deformed pyrochlore lattice. We performed neutron diffraction measurements using Ni2(OD)3Cl with the High Energy Resolution and High Q Resolution Triple-Axis Spectrometers HER and HQR, respectively, of the Institute for Solid State Physics, Tokyo University, installed at the experimental port of JRR-3 (JAEA).

The neutron diffraction pattern unambiguously demonstrates the development of a long-range antiferromagnetic order. Shown in Fig. 1 are the neutron diffraction patterns for Ni2(OD)3Cl powder sample at 10 K and 1.5 K, respectively, in which the antiferromagnetic reflection peaks are marked by the circles and triangles. The two kinds of magnetic peaks appeared at slightly different temperatures below TN=4 K, as illustrated by the inset plot. The ordering of Ni2+ spins is clearly of a long range order, judged from the peak width as compared with the lattice diffraction peaks.

Therefore, we clearly demonstrated a dy-

namic magnetic order in a new magnetic material Ni2(OH)3Cl. The short characteristic fluctuation time of 10-7 s witnessed by muSR and the long range order nature evidenced by neutron diffraction present a challenge to the current understanding of magnetic ordering. We believe further studies of Ni2(OH)3Cl engender innovation of our knowledge related to magnetism.

References

(1) X. G. Zheng, M. Hagihala, K. Nishiyama, T. Kawae: Physica B 404, 677-679 (2009).

(2) X. G. Zheng et al. Phy. Rev. B 71, 174404 (2005); ibid. 71, 052409 (2005); X.G. Zheng, M. Hagihala, T. Kawae, and C.N. Xu, ibid. 77, 024418 (2008).

(3) X.G. Zheng et al., Phys. Rev. Lett. 95, 057201 (2005); X.G. Zheng, T. Kawae, H. Yamada, K. Nishiyama, and C.N. Xu, ibid. 97, 247204 (2006).

(4) M. Hagihala, X.G. Zheng, T. Toriyi, and T. Kawae, J. Phys. Condens. Matter. 19, 145281 (2007).

Fig. 1. Fig. 1 Neutron diffraction patterns for Ni2(OD)3Cl powder sample at 10 K and 1.5 K, respectively.

Activity Report on Neutron Scattering Research: Experimental Reports **17** (2010) Report Number: 1090
Inelastic neutron scattering study on crednerite CuMnO₂

K. Hayashi, R. Fukatsu, T. Nozaki, and T. Kajitani

Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai,

980-8579

Triangular lattice antiferromagnets have received considerable attention in recent years due to the presence of extraordinary magnetic properties. In more than a decade, the crystal structure and the magnetic properties of delafossite-type oxide CuFeO₂ have been extensively studied. At room temperature, the crystal structure of the CuFeO₂ belongs to the rhombohedral space group (R $\bar{3}m$), and Fe³⁺ ions form the equilateral triangular lattice parallel to the ab-plane. Recently we performed the inelastic neutron scattering measurements for the CuFeO₂, and found the quasielastic neutron scattering (QNS) peak due to the spin-liquid phase between Néel temperature (10.5 K) and 100 K [1]. In contrast to the CuFeO₂, the CuMnO₂ has a crednerite structure belonging to the monoclinic space group (C2/m) at room temperature. The Jahn-Teller effect causes the distortion of MnO_6 octahedra, and Mn^{3+} ions form anisotropic triangular lattice. In the CuMnO₂ system, antiferromagnetic ordering is realized below 65 K [2]. In this study, we performed the inelastic neutron scattering measurements for the CuMnO₂ to investigate whether the spin-liquid phase appears in the anisotropic triangular lattice.

Inelastic neutron scattering measurements were carried out by the use of a cold neutron spectrometer, AGNES. A wave length of the incident neutron was 4.22 Å. The energy value of the scattered neutron was determined by the time-of-flight method. The energy resolution was about 0.1 meV in the present experimental condition. The data acquisition time was about 20 h. Powder CuMnO₂ sample was synthesized by the solid state reaction method as described elsewhere.

Figure 1 shows the contour map of the inelastic neutron scattering intensity,

S(|Q|, E), on the CuMnO₂ powder at 70 K. The vertical axis is the energy transfer values *E* and the horizontal axis is the wave number |Q|. Although the QNS peak is found on both the CuMnO₂ and CuFeO₂ at around Néel temperature, the |Q|-dependence of the QNS peaks is quite different. The QNS peak of the CuFeO₂ appears in the whole |Q| range, and the intensity and the half-width oscillate as a function of |Q| [1]. On the other hand, the QNS peak of the CuMnO₂ appears only at the specific $|Q_0|$ ($|Q_0| \sim 1.4 \text{ Å}^{-1}$). The magnetic structure of the CuMnO₂ is characterized by the propagation vector $q = \{-1/2, 1/2, 1/2\}$ [2] and the absolute value of the propagation vector |q|is about 1.41 Å⁻¹, which is equal to $|Q_0|$. Thus we conclude that the origin of the QNS peak of the CuMnO₂ should be the antiferromagnetic spin fluctuation and the spin-liquid phase would not appear on the anisotropic triangular lattice antiferromagnet CuMnO₂.

References

- [1] K. Hayashi *et al.*: Phys. Rev. B **80** (2009) 144413.
- [2] F. Damay et al.: Phys. Rev. B 80 (2009) 094410.

Fig. 1. Intensity contour map of inelastic neutron scattering on the CuMnO₂ powder at 70 K.

Long-Time Variation of Magnetic Structure in PrCo2Si2

(A) K. Motoya, (A) T. Moyoshi and (B) T. Shigeoka (A) Tokyo University of Science, (B) Yamaguchi University

Recently, long-time variation of magnetic structure has been observed in a nondiluted uniform magnet CeIr3Si2.(1) This material shows successive magnetic transitions in zero magnetic field and multi-step metamagnetic transitions at relatively low magneic field. These observations suggest that the frustrating magnetic interactions cause the long-time variation of magnetic structure in a material without random magnetic interactions. We have searched for other materials which show similar long-time variation of magnetic structure. We have found two intermetallic compounds PrCo2Si2 and TbNi2Si2. In this report, we present a preliminary result on PrCo2Si2.

Previous neutron diffraction study (2) found three different magnetic phases below TN=30K. For all these phases, the magnetic moments of Pr atoms on the same (001) plane align ferromagnetically parallel or antiparallel to the c-axis. Therefore, the magnetic propagation vector is given as k=(0,0,k)[2pi/c]. For T<T1=9 K, the sequence of ferromagnetic planes is +-+which corresponds to the propagation vector of k=1 (C-phase). It transforms to the incommensurate structure with k=0.926 at T1(IC1-phase). Above T2=17 K, another incommensurate structure with k=0.777 develops and persists up to TN (IC2-phase).

Time-resolved neutron scattering measurements were conducted using the 4G triple-axis spectrometer. Figure 1 shows the time evolutions of neutron scattering patterns from (a) the C-phase and (b) the IC1-phase at T=10 K after cooled from 11 K. The amplitude of the C-phase signal increases with time whereas the amplitude of the IC1-phase signal decreases. Neither the center position nor the width of each signal changes with time.

Time variation measurements of these sig-

nals were made at various temperatures. Clear time variations of magnetic scattering intensity exist in the narrow temperature range around T1.

We have shown that magnetic Bragg peaks corresponding to different types of magnetic structures coexist near the transition temperatures and the amplitudes of these peaks vary with time after the change of sample temperature.

We note that only the amplitude of Bragg peaks vary with time. Neither the position nor the line width showed appreciable time variation. These results indicate that we have observed the change of the volume fractions of two different magnetic phases same as the case of previously studied material CeIr3Si2. It should be noted that in the present materials time variations have been observed only in narrow temperature range around the commensurate to incommensurate transition temperatures.

(1) K. Motoya et al. J. Phys. Conf. Series:100 (2010) 032048.

(2) T. Shigeoka et al.: J. Mag. Mag. Mater. 70 (1987) 239.

Fig. 1. Time evolutions of neutron scattering patterns from (a) the C-phase and (b) the IC1-phase of PrCo2Si2 measured at 10 K after cooled from 11 K.

High energy-resolution inelastic neutron scattering study of the Cu₃ molecular magnet

Kazuki Iida and Taku J Sato Neutron Scattering Laboratory, Institute for Solid State Physics, University of Tokyo

Molecular namomagnets have shown a lot of macroscopic quantum phenomena. One of that phenomena was the half-step magnetization change with hysteresis, observed in the Cu_3 triangular spin cluster [1]. The origin of the half-step change is thought to be a Dzyaloshinsky-Moriya interaction, whereas the hysteresis is to be a long life-time of the spin state. To confirm the theoretical model, we performed inelastic neutron scattering experiments [2].

We used the cold neutron triple axis spectrometer, HER. A powder sample was cooled in the closed-cycle ³He refrigerator.

Figure 1 shows that the inelastic intensities of magnetic excitations in Cu₃ at $|Q| = 0.95 \text{ Å}^{-1}$ and various temperatures. From the theoretical model, we introduce the spin Hamiltonian containing the exchange and Dzyaloshinsky-Moriya interaction. Using this model Hamiltonian, observed inelastic spectra can be well reproduced at very wide temperature-range. From this result, we successfully determined the energy levels of the Cu₃ spin cluster.

Additionally, the inelastic peaks were observed even at very high temperatures as 50 K. This suggests extraordinary weak coupling between phonons, and spin states in the Cu_3 cluster, compared to the other known molecular nanomagnets.

In summary, we have determined the energy levels of the Cu₃ cluster, and observed the 'rigid' magnetic peaks.

[1] K. Y. Choi, Y. H. Matsuda, H. Nojiri, U. Kortz, F. Hussain, A. C. Stowe, C. Ramsey, and N. S. Dalal, Phys. Rev. Lett. **96**, 107202 (2006).

[2] K. Iida and T. J Sato, arXive 1005.3975.

Fig. 1. Comparison with magnetic inelastic intensities of $|Q| = 0.95 \text{ Å}^{-1}$ at various temperatures and calculation results.

Substitutioin Effect of Ga for Mn on Magnetic and Dielectric Properties of Multiferroic YMn₂O₅

H. Kimura¹, Y. Sakamoto¹, M. Fukunaga¹, Y. Noda¹, N. Abe¹, T. Arima¹ and H. Hiraka² ¹IMRAM, Tohoku University ²IMR, Tohoku University

YMn₂O₅ is famous for showing a colossal magnetoelectric effects. Since ferroelectric phase in this material arises concomitantly at the magnetic phase transition, it was believed that the electric polarization is driven by Mn⁴⁺ and Mn³⁺ YMn₂O₅ involves edge-shared spins. Mn⁴⁺O₆ octahedral chain running along *c*axis, and a pair of Mn³⁺O₅ pyramids bridging $Mn^{4+}O_6$ chains. In this configuration, the cycloidal Mn⁴⁺ spin structure in bcplane can give the electric polarization due to antisymmetric exchange expressed by $\mathbf{S}_i \times \mathbf{S}_j$. On the other hand, zig-zag antiferromagnetic (AF) chain in *ab*-plane may also produce the electric polarization by symmetric exchange striction with $S_i \cdot S_j$ interaction.

To clarify which exchange interaction $(\mathbf{S}_i \times \mathbf{S}_j \text{ and } \mathbf{S}_i \cdot \mathbf{S}_j)$ is essential for the ferroelectricity, we substituted non-magnetic Ga ion for magnetic Mn ion in YMn₂O₅. Substitution by Ga³⁺ dilutes Mn³⁺ spins, which makes the magnetic interaction in zig-zag AF chain weakened.

Temperature dependence of magnetic propagation wave vector was measured at triple-axis spectrometer AKANE. Simultaneous measurements of dielectric constant and microscopic magnetism were performed at FONDER diffractometer.

Figure shows the dielectric and magnetic phase diagram as a function of Ga^{3+} substitution, determined by neutron magnetic diffraction and dielectric measurements. The phase diagram shows that the dilution of Mn^{3+} spins suppresses the intermediate commensurate magnetic (CM) phase where the large electric polarization arises. On the contrary, the incommensurate magnetic phase at the lowest temper-

ature (LT-2DICM phase) survives in higher Ga^{3+} concentration, where the weak electric polarization arises. These results indicate that the ferroelectricity in this system comes from both and interactions, the former is given by zig-zag AF chain involving Mn^{3+} spins and the latter is given by the cycloidal Mn^{4+} spin structure which is hardly affected by the dilution of Mn^{3+} spins.

Fig. 1. Dielectric and Magnetic phase diagram of $YMn^{4+}(Mn_{1-x}Ga_x)^{3+}O_5$

Reinvestigation of the magnetic structure in L10-type MnPt powder samples

Keiichi Ogita, Izumi Tomeno and Yorihiko Tsunoda

School of Science and Engineering, Waseda University, 3-4-1 Ohkubo Shinjuku Tokyo 169-8555

The magnetic structure of MnPt powder samples at room temperature reported by previous authors does not coincide in the spin direction. The early works1-3) reported that the Mn spins are parallel to the c-axis (Type-A). Severin et al, however, reported that the Mn spins are within a cplane at the room temperature. (Type-B).4) Since the MnPt thin films are applied to the pinning of the ferromagnetic sheet in the GMR device, the direction of the magnetic moment around room temperature in MnPt fine particles which have large surface fraction would be significant for both fundamental physics and practical applications.

The MnPt powdered samples were prepared and separated in order of sizes using several sieves into the sample 1 (the diameter R1 < 20 μ m), sample 2 (20 μ m < R2 < 38 μ m), sample 3 (38 μ m < R3 < 56 μ m), sample 4 (56 μ m < R4 < 106 μ m) and sample 5 (R5 > 106 μ m). Since Severin et al used the maximum particle sizes of approximately 50 μ m, the sample 3 is comparable size with their samples. Neutron scattering measurements were performed at the T1-1 triple axis spectrometer.

What we are concerned here is only the direction of Mn magnetic moments in the cplane, the type-A or the type-B structures, at room temperature. We can easily distinguish these two types of structures using the intensity ratio of the pure magnetic peaks I (100) / I (101) because of the large tetragonality of the lattice c/a = 0.915. After the corrections of the Lorentz factor and the magnetic form factor, the expected intensity ratios for the type-A and type-B structures are 3.10 and 1.04, respectively.

The experimental data obtained for the sample 1 (R1 < 20 μ m) and the sample 5 (R5 > 106 μ m) are given in Fig.1-a) and Fig.1-b). The ratios of the observed in-

tegrated intensities for the sample 1 and the sample 5 are 3.03 and 3.04, respectively. The ratios for other samples also show the similar values. Thus, all our data support the type-A structure independent of the particle sizes. Since the sample 1 is already far smaller than that of Severin et. al, it is hard to ascribe the causes of the difference to be the size effect or the surface effect.

1) A.F.Andresen et al: Philos. Mag. 11 (1965) 1245

2) L.Pal et al: J. Appl. Phys. 39 (1968) 538.

3) E.Kren et al: Phys. Rev. 171 (1968) 574.

4) C.S.Severin et al: J. Appl. Phys. 50 (1979) 4259.

Fig. 1.

High Temperature Multiferroic State in RBaCuFeO5(R=Y, Lu and Tm)

Y. Yasui, Y. Kawamura, , S. Tatematsu, M. Sato and K. Kakurai* Dept of Phys., Nagoya Univ., *JAEA

Materials with magnetic and ferroelectric coexisting orders are called multiferroics, and have been actively studied with interest in both fields of basic and applied sciences. In particular, systems with a strong magnetoelectric coupling and/or with large magnetic and ferroelectric moments attract much interest from the view point of technical application, because their electric polarizations (magnetic-ordering patterns) can be controlled by the external magnetic field (electric field), and it is quite desirable to find multiferroic systems above room temperature. Such a system is not known, at least, in zero magnetic field. The ferroelectricity induced by an incommensurate magnetic order at about 230K have been reported by Kundys et al. for YBaCuFeO5 with an oxygen-deficiency ordered perovskite structure [1]. Stimulated by this work, we have measured magnetic and ferroelectric properties of RBaCuFeO5 (R=Y, Lu and Tm), and also carried out neutron powder diffraction studies of Tm-BaCuFeO5 using the triple axis spectrometer T1-1 installed at JRR-3 [2].

From the temperature (T) dependences of the magnetic susceptibility, two magnetic transitions were found at TN1 and TN2 for each system of YBaCuFeO5 and LuBaCuFeO5. TN1~455K and 475 K and TN2~180K and 178 K, respectively. Measurements of the dielectric susceptibility and/or pyroelectric current (electric polarization) have shown that the ferroelectric transition occurs at ~TN2. From the analyses of the reflection angles of the powder neutron diffractions, magnetic superlattice reflections were found to appear at the reciprocal points of (h/2. k/2. l/2) with odd values of h k l at TN1 with decreasing T, and at TN2, additional reflections appear at the reciprocal points of (h/2, k/2, 1/2)? δ) with odd values of h k l and δ ~0.1. Although details of this modulated structure have not been identified, we can find that magnetic moments couple with the electric polarization, and that ferroelectricity is induced by the magnetic transition to the incommensurate magnetic structure at TN2.

Figure 1 shows the T dependence of the electric polarization P obtained for Tm-BaCuFeO5 by measuring the pyroelectric current. We have confirmed the sign reversal of electric polarization, when the sample was cooled under the reversed electric field. In Fig. 2, the integrated intensities of 1/2 1/2 1/2 and 1/2 1/2 1/2+ δ (δ ~0.1) reflections obtained by neutron diffraction studies are shown against T, where we can find that the magnetic transition to the modulated structure takes place at TN2=260 K, indicating again that the ferroelectric polarization appears simultaneously with this magnetic transition. We also add that in the dielectric susceptibilitytemperature curve, a rather broad peak centered at about 260 K is superposed, indicating the gradual nature of the ferroelectric transition of TmBaCuFeO5. This characteristics is consistent with the behavior of the T-dependence of the integrated intensity of the 1/2 1/2 1/2+ δ (δ ~0.1) reflection in Fig. 2. Interesting points is that the finite polarization of TmBaCuFeO5 appears, with decreasing T, at a temperature as high as the melting point of ice.

References

[1] B. Kundys et al.: Appl. Phys. Lett. 94 (2009) 072506.

[2] Y. Kawamura et al. : J. Phys. Soc. Jpn. 79 (2010) in press.

Fig. 1. Fig. 1. T dependence of the electric polarization obtained for TmBaCuFeO5 is shown. Fig.2. Integrated intensities of the 1/2 1/2 1/2 and 1/21/2 $1/2+\delta$ magnetic reflections of TmBaCuFeO5 are plotted.

1-2-18

Neutron diffraction study in triangular spin tube CsCrF4

T. Masuda and H. Manaka ISSP, the university of Tokyo, Kagoshima University.

Theoretical study in 1D chain of antiferromagnetic triangular spins, "spin tube", predicts RVB-like spin liquid state with resonating spin dimers [1]. Spin correlation decays exponentially and finite spin gap opens at q=pi in the magnetic excitation [2]. Further theoretical study suggests an exotic phase such as Tomonaga Lattinger Liquid with chiral order by applying magnetic field or by introducing lattice distortion [3]. Very recently an ideal candidate of the triangle spin tube CsCrF4 [4] was discovered. Cr3+ ions with localized S=3/2spins forms equilateral triangles in the a-b plane and they form 1D chain in the c direction. The measured bulk properties including magnetic susceptibility and heat capacity were consistent with typical behaviors of the spin tube [4]. Hence we study the neutron diffraction study in CsCrF4 to reveal the ground state of triangular spin tube.

In April 2009 we performed the initial neutron diffraction experiment on powder crystalline sample with reasonable quality. We used 5G beamline with collimation setup open-80'-sample-PG-80'-open. Neutron energy is fixed at 14.7meV and saphire filter is installed to eliminate high energy neutrons. ORANGE type cryostat was used to achieve low temperature.

We measured diffraction pattern at T = 1.5 K and 10 K. To our surprise unidentified peaks were observed at 1.5K at 2theta \sim 19°, 22°, and 25° as indicated by red solid curves in the Figure. Then we measured the temperature dependence and we found that the peaks seemed to behave as order parameter with the critical temperature of 4K. The results indicated the magnetic order, which is totally contradicts previous scenario discussed in Ref.[4]. Hence we prepared new powder sample with special care and performed the second neutron

experiment in March 2010. The black curve is the new data. Obviously all the peaks were safely indexed and no magnetic peaks were found. This means no magnetic order down to 1.5K and we conclude that spin liquid is realized in triangular spin tube CsCrF4.

[1]K. Kawano, et al., J. Phys. Soc. Jpn. 66, 4001 (1997).

[2] S. Nishimoto, et al., Phys. Rev. B 78, 054421 (2008).

[3] M. Sato, et al., Phys. Rev. B 75, 014411 (2007).

[4] H. Manaka, et al., J. Phys. Soc. Jpn. 78, 093701 (2009).

Fig. 1. Neutron diffraction in CsCrF4.

Spin excitations in pyrochlore lattice

K. Tomiyasu(A), M. Matsuda(B), H. Ueda(C), A. Yamamoto(D) (A)Tohoku Univ., (B)JAEA, (C)ISSP Univ. Tokyo, (D)RIKEN

We measured spin excitations in geometrically frustrated magnets HgCr2O4 and Tl2Rh2O7 on HER and PONTA, respectively. We did not use HQR in this year because of the unplanned shutdown of reactor.

The 4 g of HgCr2O4 powder sample and 1 g of Tl2Rh2O7 one were used. Both the materials include nuclei with high absorption coefficients (Hg 372 barn and Rh 145 barn). The experiments aimed not only to study frustration effect but also to try to obtain significant signals from such a kind of powder samples. Magnetic ions are Cr^3 + (S=3/2) and Rh^4+ (S=1/2).

As the results, we succeeded in obtaining the clear S(Q,E) pattern for HgCr2O4, as shown in Figure. Double peaks are observed along the horizontal axis above and below TN, which is interestingly different from the hexamer with single peak emerging in isomorphic materials ACr2O4 (A=Mg,Zn,Cd). Since the ratio of |J1/J3| is theoretically expected to become small in HgCr2O4 among the chromites, we think that HgCr2O4 exhibits another type of spin molecule that satisfies all the exchange interactions.

No appreciable peak was observed for Tl2Rh2O7. The boundary of feasibility will be around here.

Fig. 1.

Observations of dynamical spin molecules in geometrically frustrated spinel magnets

K. Tomiyasu(A), Y. Kousaka(B), T. Yokobori(B), A. Tominaga(C), S. Hara(C), S. Ikeda(D) (A)Tohoku Univ., (B)Aoyama-Gakuin Univ., (C) Chuo Univ., (D) AIST

We measured spin excitations in spinel GeCo2O4 on TOPAN, and prepared a sixcrystal assembly of spinel MgCr2O4 (~4 cc) on AKANE to do experiments on a new chopper spectrometer MERLIN at ISIS, UK. We did not use HERMES that our proposal was not accepted for.

This report introduces parts of data on GeCo2O4. Please see Kotai Butsuri (in Japanese) for MERLIN data. GeCo2O4 has frustration with orbital degree of freedom (Co²+, S=3/2, d⁷). Compared to the representative spin-frustrated system MgCr2O4 with no orbital degree of freedom, it is interesting what kind of frustration effect is generated by the orbital sector.

Figure shows the data measured at E = 4 meV in paramagnetic phase. The intensity focuses in the 000, 400, 004, 222, and 440 zones (all even), and remains at the zone centers also. This fact means that the ferromagnetic spin correlation is dominant in the spin molecule fluctuation in spite of spin frustration. Meanwhile, the ferromagnetic orbital correlation in Kugel-Khomskii mechanism like in K2CuF4, therefore the ferromagnetism in the spin molecule could be interpreted as the orbital effect in frustration.

Fig. 1. Intensity distribution in Q-space at E=4 meV in paramagnetic phase in GeCo2O4.

Magnetic excitation in triangular spin tube CsCrF4

Takatsugu Masuda and Hirotaka Manaka ISSP the univ. of Tokyo and Kagoshima university

Theoretical study in 1D chain of antiferromagnetic triangular spins, "spin tube", predicts RVB-like spin liquid state with resonating spin dimers [1]. Spin correlation decays exponentially and finite spin gap opens at q=pi in the magnetic excitation [2]. Further theoretical study suggests an exotic phase such as Tomonaga Lattinger Liquid with chiral order by applying magnetic field or by introducing lattice distortion [3]. Very recently an ideal candidate of the triangle spin tube CsCrF4 [4] was discovered. As shown in the Figure Cr3+ ions with localized S=3/2 spins forms equilateral triangles in the a-b plane and they form 1D chain in the c direction. The measured bulk properties including magnetic susceptibility and heat capacity were consistent with typical behaviors of the spin tube [4]. Hence we performed the inelastic neutron scattering in CsCrF4 to reveal the magnetic excitation of triangular spin tube.

High quality powder sample was prepared by solid state reaction method. Special care was taken to eliminate magnetic impurities. ORANGE type cryostat was used to achieve T = 1.5 K. We used 5G beamline with collimation setup open-80 '-sample-PG-80 '-open. Saphire filter is installed to eliminate high energy neutrons. Main scans were collected with neutron final energy (Ef) fixed at 14.7meV. Suspiciou excitation was observed at 17meV that is coincident with a famous supurious due to 2ki - elastic incoherent - 3kf. We performed a test scan with Ef=30.5meV and confirmed the peak was supurious.

We collected S(q,E) in wide q-E space, i.e., 0.9A-1 < q < 4A-1 with delta q=0.2A-1 and -3 < E < 14meV with deltaE = 0.5meV. Continuous excitation upto 9meV was observed and its intensity decreases at higher q. This means that the excitation is dispersive and its origin is magnetic. Spin

gap was not observed in our energy range, i.e., E > 2meV. Assuming 1D system we make data transformation from powder averaged S(q,E) to pure 1D $S_{1}(q,E)[5]$. Though the transformed data is rather noisy, we clearly observed high intensity at q[~]0.5c^{*} and 1.5c^{*}. The result is consistent with 1D AF system with lattice unit of c. In combination with diffraction study we found that the ground state is disordered and the spin system is 1D AF. So far the results are consistent with typical behavior of triangular spin tube. Further experiment by high resolution cold neutron is required to reveal more detailed spin dynamics, e.g., existence of spin gap, correlation in trian-

[1]K. Kawano, et al., J. Phys. Soc. Jpn. 66, 4001 (1997).

gular ring, etc.

[2] S. Nishimoto, et al., Phys. Rev. B 78, 054421 (2008).

[3] M. Sato, et al., Phys. Rev. B 75, 014411 (2007).

[4] H. Manaka, et al., J. Phys. Soc. Jpn. 78, 093701 (2009).

[5] K. Tomiyasu et al., Appl. Phys. Lett. 94, 092502 (2009).

Fig. 1. Crystal structure of CsCrF4.

Anisotropic magnetic correlations and a magnetic field annealing effect in a helical magnet ErNi2Ge2

Y. Tabata, M. Okue, T. Yamazaki, T. Waki, H. Nakamura Graduate School of Engineering, Kyoto University

A rare earth intermetallic compound ErNi2Ge2 with a tetragonal ThCr2Si2-type structure is a proper-helical magnet with TN =3.0K and magnetic wave vector km = (0, 0, 0.75). From the recent neutron scattering experiments by using single crystalline samples, we found that an anomalous anisotropic magnetic diffuse scattering coexists with the magnetic Bragg scattering in the magnetic ordered phase [1]. Anomalously, a strong widespread diffuse-scattering is found along the [100]- and the [110]-directions, whereas, no diffuse scattering is found along the [001]-direction. The results indicates that the long-range and the short-range orders coexist in the antiferromagnetic region the short-range order consists of and 1-dimensional long-range helices along the c-axis. A helix has a degree of freedom of its phase, being the same as a XY-spin, and the correlations between helices in ErNi2Ge2 is ferromagnetic. Consequently, we speculate that ErNi2Ge2 is a mimic system of the ferromagnetic XY spin system and the coexistence of the short-range and the long-range orders is an emergence of the Kosterlitz-Thouless (KT) like phase.

In 2009, we performed a neutron scattering experiment under magnetic field on the triple-axis spectrometer T11 installed at JRR-3M reactor to investigate magnetic field effects to the anisotropic short-range order in ErNi2Ge2. The magnetic field is applied along the [110]-direction, being the magnetic easy axis. The magnetic Bragg scattering disappears at Hc = 0.6 T, being consistent with the result of macroscopic magnetization measurements, however, the diffuse scattering remains up to 1.2 T. Surprisingly, when decreasing magnetic field from the field above Hc, the magnetic Bragg scattering appears no longer and only the diffuse scattering was observed down to zero field. And also, in the H-decreasing process, the correlation length shows divergent behavior as shown in Fig. 1. The magnetic state after the "magnetic field annealing" is more similar to the KT phase and the coexistent-state of the short-range and the long-range orders in zero-field-cooling may be a failure of the KT phase.

[1] Y. Tabata et al., J. Phys. Conf. Series 145, 012078 (2009).

Fig. 1. Field-dependence of the correlation length of the short-range order.

Modulated Magnetic Structure in the Rare-earth Clathrate Eu₈Ga₁₆Ge₃₀

T. Onimaru¹, C. H. Lee² and T. Takabatake^{1,3}

¹AdSM, Hiroshima University, Higashi-Hiroshima 739-8530, ²National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, ³IAMR, Hiroshima University, Higashi-Hiroshima 739-8530

In the clathrate compound Eu₈Ga₁₆Ge₃₀, the guest magnetic ions of Eu²⁺ within the tetrakaidecahedral cages are rattling among off-center positions even within the ferromagnetically ordered state below $T_{\rm C}=36$ K.[?, ?] The resistivity and lowfield magnetization for y=0 show broad humps at 24 K and 20 K, respectively.[?] These anomalies rapidly disappear upon substituting Si for Ge in Eu₈Ga₁₆Ge₃₀, implying the existence of multiple ferromagnetic structures only in the pure ternary compound. Furthermore, the Curie temperature $T_{\rm C}$ decreases from 36.2 K for Eu₈Ga₁₆Ge₃₀ to 32.6 K for Eu₈Ga₁₆Ge_{22.3}Si_{7.3}, and in conjunction with this decrease, the jump of the specific heat at T_C is doubled. These observations suggest that a delicate modulated magnetic structure in pure Eu₈Ga₁₆Ge₃₀ is unstable against Si substitution and changes to a more robust and uniform ferromagnetic state with Si substitution.

In the present work, we performed neutron diffraction measurements on a singlecrystalline sample Eu₈Ga₁₆Ge₃₀ prepared with ¹⁵³Eu isotope for avoiding strong absorption of neutrons. Figure ?? shows the temperature dependence of the integrated intensity (left-hand scale) and the peak width (right-hand scale) of the 022 peak. Above T_C , the 022 peak was observed because of the nuclear contribution. Below $T_{\rm C}$, the intensity start increasing, and the peak width increases at around $T_{\rm C}$ and slowly decreases. These are attributed to development of ordered magnetic moments below $T_{\rm C}$, being consistent with the results of the magnetization measurements. At around $T^* \sim 20$ K, the intensity shows hump, and the peak width reaches a minimum value. Further cooling below T^* , the intensity steeply increases, and the peak width first increases, and then decreases. These complex behaviors at around T^* can not be explained by a simple ferromangetic structure. We now analyses the *q*-dependence of the intensity of the magnetic contribution in order to confirm magnetic structures at the intermediate range of $T^* < T < T_C$ and at the ground state of $T < T^*$.

Fig. 1. Temperature dependence of the integrated intensity and the peak width of the peak at Q=(022).

Multipolar Transition in a Trigonal Pr₄Ni₃Pb₄ with Non-Kramers Ground State

T. Onimaru¹, A. Ishida¹, T. J. Sato² and T. Takabatake^{1,3} ¹AdSM, Hiroshima University, Higashi-Hiroshima 739-8530 ²ISSP, University of Tokyo, Tokai 319-1106 ³IAMR, Hiroshima University, Higashi-Hiroshima 739-8530

Multipolar degrees of freedom often play an important role in 4f electron systems. Non-Kramers ions such as Pr³⁺ and Tm³⁺ possess multipolar degrees of freedom other than magnetic dipoles even in a trigonal symmetry. In the present work, we have focussed on a Pr-based intermetallic compound Pr₄Ni₃Pb₄, where Pr ions occupy the 3a site with the C₃ point symmetry and the 9b site with the C_1 point symmetry. In the C_3 point symmetry, a nine-fold multiplet ${}^{3}H_{4}$ splits into three Γ_1 singlets and three Γ_{23} doublets with quadrupolar degrees of freedom, although, in the C_1 point symmetry, nine Γ_1 singlets. The isothermal magnetization shows a shoulder-like anomaly at 4 T only for $B||c_{1}$ suggesting that an excited Γ_{23} doublet exists at a small energy of 4 K above the Γ_1 singlet ground state of the Pr at the 3a site. The specific heat has cusp-type double anomalies at T_{N1} =2.7 K and T_{N2} =2.1 K.

In neutron diffraction measurements on a single crystalline sample, a magnetic peak appears at $Q=(1,0,\frac{1}{4})$ and its equivalent positions below $T_{N2}=2.1$ K. At the temperature range between T_{N2} and T_{N1} , the peak at $(1,0,\frac{1}{4})$ splits into two peaks at $(1,0,\frac{1}{4}\pm\delta)$ ($\delta\sim0.1$) where the peak positions shift on cooling. These behaviors indicate an incommensurate magnetic structure. We observed both peaks at 2.14 K close to T_{N2} , suggesting that the IC-C transition at T_{N2} should be of first order. Comparing the intensities of the equivalent magnetic peaks, they tend to be strongly suppressed as the peak positions approach to the [001]* direction. It means that the magnetic moments have a trend to align along the *c*-axis in the ordered structures.

Figure 1 shows the inelastic neutron scat-

tering spectra of $Pr_4Ni_3Pb_4$ at T=4 K and 30 K, and that of the reference La₄Ni₃Pb₄ at T=4 K. At 2.5 meV and 6.7 meV, peaks The intensities of the were observed. peaks decrease with increasing temperature, therefore, they result from crystalline electric field (CEF) excitations. These are also confirmed because no peak was observed at the energies in the reference La₄Ni₃Pb₄. From the CEF analysis on the magnetization, the peak at 2.5 meV is probably ascribed to a CEF excitation at the Pr at the 9b site with the C_1 point group, however, the peak at 6.7 meV the Pr at the 3a site with the C₃ point group. We now analyses the temperature dependence of the intensities of the CEF excitation peaks to confirm the CEF level scheme of both the Pr sites in Pr₄Ni₃Pb₄.

Fig. 1. Inelastic neutron scattering spectra of $Pr_4Ni_3Pb_4$ at T=4 K and 30 K, and that of the reference $La_4Ni_3Pb_4$ at T=4 K.

Investigation of spin molecule in geometrically frustarted spin system NiS₂

M. Matsuura

Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577

Nearest-neighbor antiferromagnetic (AF) interaction on a spin loop that includes an odd number of spins gives rise to an inherent geometrical frustration effect in magnetic systems. This frustration causes high degeneracy of ground states, resulting in intriguing phenomena that have attracted intense interest for many years. Ni²⁺ (S = 1) atoms in NiS₂ forms fcc structure, in which a geometrical spin frustration causes a strong suppression of AF long range ordering and a complicated spin structure at low temperatures.[1] Matsuura et al has perfomed inelastic neutron scattering and found spin fluctuation showing characteristic Q-pattern extending along the boundary of the Brillouin zone boundary of fcc lattice in the paramagnetic phase, which is universally observed in geometrically frustrated spin systems.[2] Not only in the paramagnetic phase, but in AF long range ordered phase, recent inelastic neutron scattering studies on one of the typical frustrated spin systems spinels have revealed a novel spin excitations confined in a narrow energy range at discrete levels, which was associated with localized spin molecules, such as AF spin hexamer and heptamer.[3] The purpose of the present report is to investigate localized spin molecules in the AF ordered phase of NiS₂. Neutron scattering experiments were performed on the triple-axis spectrometers PONTA installed at the JRR-3 Reactor hall of JAEA.

We confirmed that a spin wave from a AF Bragg point reaches zone boundary around $\omega = 33$ meV. Therefore, we perfomed mesh scan at $\omega = 35$ meV in (*hhl*) plane at T = 10 K ($T < T_N = 39.6$ K), as shown in Fig.1. Around AF Bragg points (open circles), ridges extend along [011] direction, which connects to another ridges on the Brillouin zone boundaries (dotted lines). Apparently, the *Q*-pattern of the scattering intensity has a larger periodicity than chemical (fcc) unit cell. Origin of these modes should be studied by temperature and *Q*-dependences in near future to check universality of spin molecules in the geometrically frustrated spin systems.

References

- T. Miyadai *et al.*, J. Phys. Soc. Jpn. **38** 115 (1975).
- [2] M. Matsuura *et al.*, Phys. Rev. B 68 94409 (2003).
- [3] K. Tomiyasu *et al.*, Phys. Rev. Lett. **101** 177401 (2008).

Fig. 1. Contour map of scattering intensity at fixed energy transfer of 35 meV in a (*hhl*) plane. The dotted line shows Brillouin zone boundaries of fcc lattice. The solid rectangles and open circles show nuclear and magnetic Bragg points, respectively.

Spin dynamics in novel Rare-earth based single-molecule magnets

Takashi Kajiwara¹, Motohiro Nakano², Maiko Kofu³, Osamu Yamamuro³ ¹Nara Women's Univ., ²Osaka Univ., ³ISSP, Univ. of Tokyo

Single-molecule magnets (SMMs) are a class of metalorganic compounds, which exhibit hysteresis of magnetization upon external magnetic field even though they have no long-range cooperative interactions. This behavior originates in a large magnetic moment and uniaxial magnetic anisotropy (D < 0), which gives rise to a double-well potential of the spin-up and the spin-down states and relaxation phenomenon between them. In recent years, not only thermal activation processes but also quantum tunneling ones are reported in SMMs. However, the mechanism of quantum tunneling process has not been fully understood yet.

To date, SMMs containing multiple transition metal atoms such as Mn, Fe, and Ni, have been intensively studied. Most recently, a new series of rare-earth based SMMs was discovered and attracts much attention. Because of large contribution of angular momenta, lanthanide complexes can become SMMs containing only one or two magnetic ions, being simpler than the transition metal SMMs and suitable for fundamental studies. Recently, we have succeeded to synthesize SMMs consisting of Tb (J = 6) and Cu (S = 1/2) ions (see Fig. 1(a)) and found that the system switch from SMMs (complex 1, 2, 4) to non-SMMs (complex 3, 5) by slight structural modification around the Tb ions. From dc magnetic susceptibility data, we suppose that non-SMM complexes do not have easy-axis anisotropy but easy-plane one. Our purposes are (i) to determine the parameters of Hamiltonian by inelastic neutron scattering (INS) measurements and (ii) to investigate the magnetic relaxation by quasielastic neutron scattering (QENS) measurements.

We have performed INS measurements for complex 1 on AGMES in the standard

mode (FWHM = 0.12 meV). As seen in Fig. 1(b), a clear excitation peak was observed at 1.7 meV. We expect that this peak corresponds to the excitation between $|6,1/2\rangle$ and $|6,-1/2\rangle$ states. Assuming an exchange coupling between Tb and Cu spins, the exchange coupling is estimated to be 0.28 meV. The INS experiments for non-SMM complex are now in progress.

We have also carried out QENS measurements for complex 1 in the high-resolution mode (FWHM = 0.049 meV). Above 50K, we observed a QENS component. In order to confirm whether the QENS results from the magnetic relaxation, further experiments will be performed.

[1] T. Kajiwara, *et. al.*: Inorg. Chem., 47 (2008) 8604.

Fig. 1. (a) Molecular structure of Tb-Cu based compounds. (b) $S(Q,\omega)$ of complex 1 taken on AGNES.

Spin dynamics in multiferroics Ba₂Mg₂Fe₁₂O₂₂

D. Okuyama(A), N. Kida(B,C), S. Ishiwata(D), Y. Taguchi(A), K. Iwasa(E), T. Arima(F), and Y. Tokura(A,B,D)

(A)RIKEN-CMRG, (B)ERATO-MF, (C)Univ. of Tokyo-GSFS, (D) Univ. of Tokyo, (E)Tohoku Univ., (F)Tohoku Univ.-IMRAM

Multiferroics with both the ferromagnetic and ferroelectric order have recently been attracting an intense interest. Since Pimenove and coworkers proposed that magnetic excitation induced by an electric field component of light, termed electromagnon[1], extensive studies were performed by using terahertz spectroscopy for many multiferroic materials[2]. In this work, with use of inelastic neutron scattering technique, we observed magnetic excitation at the frequency where the electricdipole-active magnetic resonance (on electromagnon) was found by terahertz spectroscopy in a multiferroic Ba₂Mg₂Fe₁₂O₂₂. The space group of $Ba_2Mg_2Fe_{12}O_{22}$ is $R\bar{3}m$. The crystal structure is illustrated in Fig. 1 (d). The lattice constants are a=5.8798and c=43.589 Å. The proper screw magnetic order below 195 K and conical magnetic order (see Fig. 1 (d)) below 50 K were observed[3]. The conical phase exhibits large magneto-electric effects. The direction of the ferroelectric polarization can be controlled by a magnetic field of tens mili tesla[4,5]. Inelastic neutron scattering experiment was performed at the 3-axis spectrometer TOPAN (6G). Twin-free single crystals of Ba₂Mg₂Fe₁₂O₂₂ were grown by a flux method. Two single crystals were aligned with the [1 1 0] axis normal to the scattering plane. We chose the E_f -fixed (13.5meV) mode and measured the inelastic spectrum up to an energy transfer of 10 meV.

Figure 1 shows the dielectric constant and inelastic neutron scattering spectrum, measured at 10 K, at which the conical spin structure is founded (Fig. 1 (d)). The terahertz light spectroscopy could identify a peak structure in ε_2 of Fig. 1 (b) and a dispersive structure in ε_1 at around 2.8 meV as shown in Fig. 1 (a). It is noted that the resonance takes place only with the electric field of terahertz-light parallel to the [001]-axis. This result indicates that the observed resonance originates from the electric field of light. The intensity of the resonance decrease above the conical transition temperature 50 K. This implies that the observed resonance is strongly coupled with the conical spin structure[6]. To elucidate the origin of the observed resonance, we measured the magnon spectra by using neutron inelastic scattering. Figure 1 (c) shows inelastic neutron scattering spectrum at the momentum transfer of (2+ δ -2- δ 1.6), near the magnetic Γ point (2 -2 1.6). At δ =0, a clear peak is observed around 2.8 meV below the conical transition temperature 50 K, similar to the resonance spectrum measured by the terahertzlight. With increasing temperature, the intensity of the peak becomes weaker and the position of the peak shifts to lower energies. Above the transition temperature 50 K, the peak merges to the elastic peak. The disappearance of the peak above the conical transition temperature indicates that the observed peak has the magnetic origin. These results clearly indicate that the resonance observed by terahertz spectroscopy is nothing but a magnetic excitation induced by electric-filed of light, namely, electromagnon. We also observed the parabolic dispersion relation of the magnon along the (1 - 1 0).

In summary, by using the neutron inelastic scattering technique, we assigned the origin of a resonance observed by terahertz spectroscopy to an electromagnon. Detailed results are reported in Ref. [6].

[1] A. Pimenov *et. al.*: Nat. Phys. **2**, 97 (2006). [2] N. Kida *et. al.*: J. Opt. Soc.

Am. B **26**, A35 (2009). [3] S. Ishiwata *et. al.*: Phys. Rev. **B 81**, 174418 (2010). [4] S. Ishiwata *et. al.*: Science **319**, 1643 (2008). [5] K. Taniguchi *et. al.*: Appl. Phys. Express **1**, 031301 (2008). [6] N. Kida *et. al.*: Phys. Rev. **B 80**, 220406 (2009).

Fig. 1. (a,b) The dielectric function deduced by terahertz-light spectroscopy. (c) Inelastic neutron scattering spectra. (d) Schematic views of crystal structure and magnetic structure below 50 K.

```
1-2-28
```

High-energy excitations in BaFe2As2

K. Matan and T. J. Sato ISSP, University of Tokyo and TRIP, JST

In 2008, a group in Japan reported high-Tc superconductivity in the Fe-based layered material LaFeFAsO [1]. Since then, a boom of the superconductivity research has been continuing all over the world to date. An intriguing system of this class may be BaFe2As2, since it becomes superconducting in various ways, such as chemical doping or applying pressure. In 2009, we performed inelastic neutron scattering experiments for the first time on the single crystalline BaFe2As2, and showed that there is a gapped spin-wave-like excitation in the low energy regions (hw < 40 meV) in this system [2]. To extend the energy range, we have performed neutron inelastic scattering study of BaFe2As2 at the PONTA spectrometer.

Shown in Fig. 1 is the typical inelastic scattering spectrum obtained at PONTA using the single crystal of Ba(Fe,Co)2As2 (approximately 1 gram). As can be seen in the figure, a strong background hinders the gapped behavior. The spectrum was also checked using exactly the same parent sample BaFe2As2 used in the GPTAS experiment, but the background level was unacceptable to observe small signal from the BaFe2As2 and/or Ba(Fe,Co)2As2 single crystals. We have tried various ways to reduce the background, and at the end we have succeeded in reducing the background by roughly a factor of 2. However, this was not sufficient for our purpose, i.e., observation of the higher energy excitations, which is definitely weaker, and thus we have terminated this project at PONTA, and decided to continue at either spallation source or overseas facilities where Cu monochromator is available.

[1] Y. Kamihara et al., J. Am. Chem. Soc. 130 (2008) 3296. [2] K. Matan et al., Phys. Rev. B 79 (2009) 054526.

Fig. 1. Inelastic spectrum at Q=(1,0,1) and at T=3K for the Ba(Fe,Co)2As2.

This is a blank page.

1. 中性子散乱 3) 強相関電子系

1. Neutron Scattering 3) Strongly Correlated Electron Systems This is a blank page.

Magnetic Correlations in the Pseudogap Phase of Optimally Doped Bi2212

M. Matsuura¹, Y. Yoshida², H. Eisaki², N. Kaneko², C.-H. Lee² and K. Hirota¹

¹ Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka,

560-0043.

² AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568

In the underdoped region of high- T_c system, a partial gap structure in the charge or spin excitation spectra has been observed universally though its origin is still controversial. Recent inelastic neutron scattering study of underdoped YBa₂Cu₃O_{6.6} has shown that the dispersion relations of spin excitations in the superconducting and pseudogap states are qualitatively different; unusual vertical dispersion is observed in the pseudogap state instead of the hour glass shape of the magnetic dispersions in the superconducting state[1]. This important difference in the magnetic excitation between the pseudogap and superconducting state should be studied in other high- T_c system. Therefore, we explored the magnetic spectrum in the pseudogap state of optimally doped Bi2.1Sr1.9CaCu2O8+6 (Bi2212).

Neutron scattering experiments were performed on the triple-axis spectrometer PONTA with horizontal collimations of 48'-80'-80'-120' and E_f of 30.5 meV. The single crystals were grown by floating zone method and T_c is determined to be 86 K from a shielding signal. We have aligned 9 single crystals on Al plates. The total mass of aligned crystals is 4.6g (0.71cc). The momentum transfer (Q_x, Q_y, Q_z) is denoted in units of reciprocal lattice vectors $a^* \sim b^* = 1.64 \text{ Å}^{-1}$ and $c^* = 0.20 \text{ Å}^{-1}$.

Figure 1 shows the contour map of the scattering intensity near (π, π) measured in the pseudogap state (T = 100 K). The single commensurate peak at center, that is (π, π) , and $\omega = 26 \text{ meV}$ splits and disperses outwards with increasing energies, which is similar to the dispersion observed in the pseudogap state of underdoped YBCO[1]. Note that the scattering intensity is especially large at $\omega =$ 34 meV, where the resonance peak at (π, π) (q = 0) appears in the superdonducting state. This suggests coupling between spinwave mode and the other excitation at $\omega =$ 34 meV. Interestingly, the same value of the superconducting gap Δ has been reported from an STS study of optimum Bi2212[2], indicating pre-formed singlet pairs in the pseudogap phase could be the origin of such enhancement of the spin-wave intensity.

References

- [1] V. Hinkov *et al.*, Science **319**, 597 (2008).
- [2] T. Nakano *et al.*, J. Phys. Soc. Jpn. **67**, 2622 (1998).

Fig. 1. Intensity contours of the inelastic scattering near (π , π) measured at T = 100 K ($> T_c$). The thick black line shows spin-wave dispersion of two-leg spin ladder with gap of 24 meV and zone boundary energy of 80 meV.

Study of spin fluctuations in electron-doped antiferromagnetic phase of $Pr_{1.4-x}La_{0.6}Ce_xCeO_4$

M. Fujita¹, M. Nakagawa², and K. Yamada³

 ¹ Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan
² Department of Physics, Tohoku University, Aramaki, Sendai 980-8578, Japan
³ World-Premier-International Research Center Initiative, Tohoku University, Katahira, Sendai 980-8577, Japan

High transition temperature (high- T_C) superconductivity arises when a sufficient density of carriers is doped in a parent Mott insulator. Upon doping, longrange magnetic order disappears but dynamic antiferromagnetic (AF) spin correlations survive and coexist with the induced superconducitity[1]. Thus, AF spin fluctuations in a doped CuO₂ plane are widely believed to have a fundamental connection with underlaying mechanism of high- T_C superconductivity[2]. Indeed, extensive neutron scattering experiments on hole-doped (p-type) system have shown a close connection between the magnetism and the superconductivity[3]. On the other hand the study of spin fluctuations in the electron-doped (n-type) system is rather limited. Although the existence of commensurate spin fluctuations in the *n*-type SC phase was clarified by a comprehensive neutron-scattering measurements[4], less is known about the spin correlations in the AF ordered phase, which is robust against electron-doping.

In order to clarify the nature of spin correlations in an electron-doped Mott insulator, we have performed neutron-scattering experiments on the $Pr_{1.4-x}La_{0.6}Ce_xCuO_4$ system with several electron concentrations. Figure 1 is the inelastic neutron-scattering spectrum measured at ω =6 meV and T=10 K for (a) x=0 (T_N ~180 K) and (b) x=0.08 (T_N ~100 K). Existence of spin fluctuations around (1,0,0) position in the orthorhombic notation corresponding to (π , π) were confirmed below 12 meV. No obvious effect of doping on the low energy spin fluctuations was observed and the spin-

wave velocity obtained by a energy dependence of peak-width is almost constant in the AF ordered phase for $x \le 0.10$. This doping effect in the AF ordered phase is quite different from the peak-broadening of observed inelastic signal and the reduction of spin stiffness against doping in the SC phase. These results suggest that the dynamical spin correlation start to degrade on crossing the AF-SC phase boundary upon electron doping.

References

- [1] B. Keimer et al.: Phys. Rev. B 46 (1992)14034.
- [2] M. A. Kastner *et al.*: Rev. Mod. Phys. **70** (1998)897.
- [3] K. Yamada et al.: Phys. Rev. B 57 (1998)6165.
- [4] M. Fujita *et al.*: Phys. Rev. Lett **101** (2008)107003.

Fig. 1. Constant-energy spectra with ω =6meV in Pr_{1.4-x}La_{0.6}Ce_xCuO₄ measured at 10K for x=(a) 0 (T_N ~180 K) and (b) 0.08 (T_N ~100 K).

Uniaxial pressure induced magnetic phase of $CuFe_{1-x}Ga_xO_2$ (x = 0.018)

T. Nakajima¹, S. Mitsuda¹, K. Takahashi¹, K. Yoshitomi¹, R. Kiyanagi², Y. Noda², N.

Aso³, Y. Uwatoko⁴

¹Tokyo Univ. of Sci., ²IMRAM of Tohoku Univ., ³Univ. of the Ryukyus, ⁴ISSP Univ. of Tokyo.

A triangular lattice antiferromagnet CuFeO₂ is known as a spin-lattice coupled system, in which magnetic phase transitions are often accompanied by discontinuous changes in lattice constants[1]. This implies the possibility that the magnetic phase transitions can be controlled by an application of pressure, which might result in 'artificial' changes in lattice constants. In previous study, we have performed neutron diffraction measurements on CuFe_{1-x}Ga_xO₂ (CFGO) with x = 0.018under applied uniaxial pressure[2]. As a result, we found that, at T = 2.5 K, two small peaks assigned as $(q, q, \frac{3}{2})$ and $(\frac{1}{2} - q, \frac{1}{2} - q, \frac{3}{2})$ with $q \sim 0.205$ coexists with a large peak at $(\frac{1}{4}, \frac{1}{4}, \frac{3}{2})$ corresponding to the 4-sublattice (4SL) magnetic ordering, which is the magnetic ground state of this system (see Fig. 1(b)). Temperature dependence of these incommensurate reflections implies that a small fraction of screw-type magnetic ordering, which originally shows up only in the temperature range of 7 K < T < 9 K under zero pressure, was retained by the application of the pressure, down to 2.5 K[2]. In the present study, we have performed magnetic structure analysis for the small incommensurate magnetic reflections.

A single crystal CuFe_{1-x}Ga_xO₂ with x = 0.018 was cut into thin plate with dimensions of $\sim 3 \times 3 \times 1$ mm³. We developed a uniaxial pressure cell along the pioneering work by Aso *et al.*[3]. Uniaxial pressure of 60 MPa was applied on the widest surface normal to the [110] direction, as shown in Fig. 1(a), at room temperature. The neutron diffraction measurements were performed using the four-circle neutron diffractometer FONDER installed at JRR-3 in JAEA. The incident neutron beam with wave-

length 1.240 Å was obtained by a Ge(311) monochromator. The sample in the pressure cell was mounted on a closed-cycle He-gas refrigerator.

In Fig. 1(c), we show hkl-dependence of the spin orientation factor (SOF) defined as $|F_{hkl}|^2/f(q)^2$, where F_{hkl} and f(q) are magnetic structure factor and Fe³⁺ magnetic form factor, respectively. Comparisons between the calculated and the observed SOFs show that the magnetic structure corresponding to the small incommensurate magnetic reflections is a screw-type structure, confirming that the intermediate phase is retained by the application of the pressure, down to low temperatures. The present result also suggests that the 'ellipticity' of the screw-type magnetic structure is affected by the application of the uniaxial pressure. In order to elucidate more details of the magnetic orderings in this system under applied pressure, further investigation is required.

References

- [1] N. Terada *et al.*: PRB **75** 224411(2007).
- [2] K. Yoshitomi *et al.*: ISSP-NSL report.
- [3] N. Aso et al.: JPCM 17 S3025 (2005).

Fig. 1. (a) Schematic drawing of the experimental configuration. (b) Diffraction profile of $(h, h, \frac{3}{2})$ reciprocal lattice scan at 2.5 K. (c) The *hkl*-dependence of the observed SOFs.

Hole-doping dependence of spin excitation in Bi2201 high- T_c cuprate system

M. Fujita¹, M. Enoki², Y. Ai², S. Iikubo³ and K. Yamada⁴

¹ Institute for Material Research Center, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577

² Department of physics, Tohoku University, 6-3 Aramaki aza aoba, Sendai, 980-8578

³ Kyushu Institute of Technology, 2-4 Hibikino, Kitakyushu, 808-0196

⁴ WPI-AIMR, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577

Intensive neutron-scattering studies of high- T_c superconductor reveal a close correlation between the magnetism and the superconductivity. For instance, the hourglass shaped dispersion of spin excitation is commonly observed in the superconducting phase of $La_{2-x}Sr_xCuO_4$ (LSCO), YBa₂Cu₃O_{6+ δ} and Bi₂Sr₂CaCu₂O_{8+ δ} systems [1-3], suggesting an existence of universal nature of spin correlation in high- T_c cuprate. However, due to a limited system for the comprehensive study of the magnetism against hole-doping, the direct relation between the two is still less understood. Hence, we have started a systematical study of the spin excitations in the one-layer Bi₂Sr₂CuO_{6+ δ} (Bi2201) system, in which the hole concentration can be widely controlled by substituting Bi and/or Sr site by other elements as well as LSCO system.

Figure 1 shows the spin excitation spectra measured at the constant-energy of $\omega=4$ meV for $Bi_{2+x}Sr_{2-x}CuO_{6+\delta}$ x=0.4, 0.2 and $Bi_{1.8}Pb_{0.2}Sr_{1.8}La_{0.2}CuO_{6+\delta}$ samples. As is seen in Fig.1, we succeeded in observing obvious development of the low-energy excitation spectra in Bi2201 upon holedoping. In the lightly hole-doped x=0.4(non-superconducting sample), a broad single peak was observed at $Q=(\pi, \pi)$. On the other hand, the superconducting x=0.2 sample exhibits incommensurate peaks split into [100]/[010] direction in the tetragonal notation. The incommensurability is 0.12 r.l.u., roughly corresponding to the hole concentration (~ 0.11). These results are similar to the LSCO in qualitatively. The spectral intensity, however, in the superconducting sample is quite weak compared with that in LSCO at comparable hole concentration. Furthermore, in the nearly optimal doped $Bi_{1.8}Pb_{0.2}Sr_{1.8}La_{0.2}CuO_{6+\delta}$ ($T_c \sim 34$ K), on well-defined low-energy spin excitations were detected. These results suggest the low-energy spin excitation in Bi2201 drastically lose the spectral weight upon doping. This tendency is great different from the LSCO. The origin of the difference between the two systems is important to be clarified for the unified understanding of spin excitation in high- T_c cuprates.

References

- [1] J.M. Tranquada *et al.*: Nature **429**, (2004) 534.
- [2] S.M. Hayden *et al*.: Nature **429** (2004) 531.
- [3] B. Fauque *et al.*: Phys. Rev. B **76** (2005) 214512.

Fig. 1. Spin excitation spectrum in $Bi_{2.2}Sr_{1.8}CuO_{6+\delta}$ for (a) x=0.4, (b) 0.2 and (c) $Bi_{1.8}Pb_{0.2}Sr_{1.8}La_{0.2}CuO_{6+\delta}$ at $\omega=4$ meV.

Inelastic Magnetic Scattering of Fe oxypnictide superconductors

S. Tatematsu, T. Moyoshi, Y. Yasui, M. Sato and K. Kakurai* Dept of Phys., Nagoya Univ., *JAEA

To identify the origin of the superconductivity of Fe based systems, whose highest transition temperature Tc is ~56 K, the determination of the symmetry of the superconducting order parameter is essentially important. On this issue, we have been experimentally studying the rate of the Tc suppression by nonmagnetic impurities [1] and T dependence of the NMR longitudinal relaxation rate [2], using socalled Ln1111 system LnFe1-yMyAsO1xFx (Ln=La, Nd; M=Co, Mn, Ru).

Theoretically, it has been predicted on the basis of spin-fluctuation mechanism of the pair formation that the symmetry is S-like, but unconventional in the sense that even though it does not have nodes of the order parameter, the two kinds of order parameter on the disconnected Fermi surfaces have opposite signs. We call it S? symmetry. Although many experimental data supporting this prediction were published, almost all of them cannot distinguish whether the sign change really exists between the disconnected Fermi surfaces. Actually, to experimentally prove this prediction, it is important to directly approach this phase difference between the order parameters. One of the ways to do this is to study the coherence factors, which usually reflects in various physical quantities the relative phases of the order parameters. The coherence peak, which can be observed in the T dependence of the NMR 1/T1 of the ordinary S-symmetry superconductor is such an example. However, we have to be careful, because if the damping of the quasi particles is large, the coherence peak cannot be seen, and because this kind of large damping can be easily expected for the present Fe based systems with strong magnetic fluctuations. Therefore, it is rather important to study the magnetic excitation spectra of the systems in detail, as another quantity which reflects the coherence factor directly.

Truly speaking, our results on the rate of the Tc suppression by nonmagnetic impurities indicate rather rigidly that the sign difference between the order parameters on the two disconnected Fermi surface is quite unlikely, and it seems at this moment the most reliable experimental evidence on the symmetry problem. Therefore, it seems to be very urgent to see the magnetic excitation spectra in detail to establish the symmetry of the order parameter without any uncertainty.

We have carried out neutron inelastic scattering measurements to see the magnetic excitation spectra for polycrystalline samples of LaFeAsO0.89F0.11 [3] and Ba(Fe,Co)2As2 (Tc²2 K), at the scattering vector corresponding to the so-called (?,?) point in the reciprocal space, and the data are shown in Figs. 1(a) and 1 (b) at two temperatures below and above Tc. We have also been trying to prepare single crystals large enough for the measurements. However, the Bragg reflection intensity shown in Fig 2 is not strong enough for the measurements, and now, we are making much effort to prepare large crystals and/or to align crystals obtained up to now. Our crystals were also used in the study of various measurements. Figs. 3 and 4 show that the magnetic field dependence of the specific heat C(T) can be described in a unified way, showing that the system has no nodes.

references

[1] M. Sato et al. J. Phys. Soc. Jpn. 79 (2010) No. 1 014710-(1-10).

[2] Y. Kobayashi et al. J. Phys. Soc. Jpn. 78 (2009) No. 7 073704 (1-4).

[3] T. Moyoshi et al. Physica C to be published. doi:10.1016/j.physc.2009.11.085.

Fig. 1. Fig. 1. I/(n+1) ?E curves at Q^{-1.1}; (a) LaFeAsO0.89F0.11 and (b) Ba(Fe0.9Co0.1)2As2 (Tc⁻²² K). Fig. 2. ω -scan profile of 002 nuclear reflection of a Ba(Fe0.9Co0.1)2As2 crystal. Fig. 3. C/T ?T2 curves. Fig. 4. Δ C(\equiv C(T,H)-C(T,0)) ? TH curves.

1-3-5

Investigation of 4f electronic state and atomic vibration in rare-earth based compounds by neutron scattering

K. Iwasa¹, K. Saito¹, R. Igarashi¹, H. Kobayashi¹ *Tohoku Univ.*¹

Electronic and vibrational states of filled atoms in cage-like structures have been attractive. Such structure can enhance electronic hybridization between filled ions and surrounding ligands, and the filled ion motion with large amplitude may couple with the electronic state. We have investigated such properties in the rare-earth filled skutterudites. In addition to these studies, we have studied following subjects in FY2009.

(a) Crystal-field excitation and multipolar ordering in $Pr(Ru_{1-x}Rh_x)_4P_{12}$

Spontaneous ordering of higher-rank multipoles of 4f electrons has been detected in various rare-earth based materials. $PrRu_4P_{12}$ is one of typical systems, exhibiting the antiferro-type hexadecapolar (rank-4 multipolar) ordering below the metal-nonmetal transition at 63 K (T. Takimoto: J. Phys. Soc. Jpn. 75 (2006) 034714). It should be notable that the ordering is characterized by the crystal field excitations exhibiting the strong temperature dependence in accordance with the evolution of the multipolar order parameter (K. Iwasa et al.: Phys. Rev. B 72 (2005) 024414). The substitution of Rh to Ru gives rise to suppress of metal-nonmetal transition (C. Sekine et al.: Physica B 378-380 (2006) 211). Thus, a study of the doping effect leads to understand the ordered phase of PrRu₄P₁₂. We have carried out inelastic scattering experiments to measure crystal-field excitation of $Pr(Ru_{1-x}Rh_x)_4P_{12}$.

We have performed experiments using the triple-axis spectrometers TOPAN (6G) for polycrystalline sample of $Pr(Ru_{0.99}Rh_{0.01})_4P_{12}$. Previous studies revealed that the Rh doping systems (*x* = 0.03, 0.05, 0.10 and 0.15) shows the crystal field excitations at 2.4 and 13 meV whose peak positions do not show any temperature dependence, in addition to the strongly temperature dependent ones as observed in PrRu₄P₁₂. The most recent measurement for x = 0.01 performed at HER also shows the same temperatureindependent excitation peak. The peak appearing in the Rh doped systems indicates that some Pr ions does not contribute to the ordering. We carried out the inelastic measurements in thermal neutron range. The strong temperature-dependent peak was observed around 9 meV, which is identified as that in the pure PrRu₄P₁₂. Thus, Rh 1% sample is consistent with the aforementioned separation of ordered and disordered regions in the sample crystals.

(b) Rare-earth atomic vibrations in hexaborides RB_6

RB₆ is composed of a hard frame of boron atoms and rare-earth ions filled inside. Among them, Gd ions in GdB₆ exhibit larger thermal vibration amplitude, so that it can be categorized into the so-called rattling systems. This material has been famous for the simultaneous magnetic and structural phase transition with the distinct two transition temperatures at $T_{\rm N}$ = 16 K and $T_* = 9$ K (K. Kuwahara *et al.*: Physica B 359-361 (2005) 965, R. M. Galera et al.: J. Appl. Phys. 63 (1988) 3580). At $T_{\rm N}$, the magnetic ordering characterized by the wave vector $q_{M} = (1/2, 1/4, 1/4)$ and the structural superlattice by $q_1 = (1/2, 0, 0)$ appear. The latter is expected to be given by the displacement of Gd ions, due to magnetoelastic-type interaction (M. Amara et al.: Phys. Rev. B 72 (2005) 064447). We performed inelastic x-ray (BL35XU at SPring-8) and neutron (6G TOPAN at JRR-3) scattering experiments for GdB_6 and YbB₆, respectively. The latter compound is nonmetallic and nonmagnetic, in contrast

to the typical RKKY-type magnet GdB_6 , so it was measured as a reference material.

The dispersion relation curve of the longitudinal acoustic mode propagating along the simple cubic [100] axis shows the maximum energy around the wave vector $\mathbf{q} =$ (0.25, 0, 0), and it bends down with approaching the Brillouin zone boundary. The lower-energy zone-boundary mode at $q_1 = (1/2, 0, 0)$ corresponds to the structural modulation in the ordered phase. The energy of this mode is 75% of the maximum value on the branch at 300 K and further decreases by 10% with decreasing temperature down to $T_{\rm N}$, so that this phonon mode softens considerably far above the transition temperature. On the other hand, the reference material YbB₆ does not show such softening. The observation indicates a strong electron-phonon coupling in GdB_{6} , which is expected to be magnetoelastictype interaction between 4f states and displacement of Gd ions.

(c) Heavy-electron material with $4f^2$ state in PrCu₄Au

Recently, the group of Univsersity of Toyama reported the succeeding synthesis of PrCu₄Au and a characteristic heavyelectron properties (S. Zhang et al.: J. Phys.: Condens. Matter 21 (2009) 205601). They also suggest antiferromagnetic ordering below 2 K from the magnetic susceptibility and specific heat measurements. The heavy fermion with f^2 electronic state provided by Pr or U ions have been discussed in terms of quadrupolar Kondo effect, dual nature of itinerant and localized f electrons, and effect of quasi-degeneracy of a crystal-field singlet-triplet scheme. Thus, we started to investigate the microscopic electronic state in PrCu₄Au.

A polycrystalline sample was grown by arc-melting method, and neutron scattering experiment was carried out at 6G TOPAN using 1 K and 10 K refrigerators.

We succeeded in detecting the magnetic ordering below about 2 K with a propagation vector $\mathbf{q} = (1/2, 1/2, 1/2)$ in MgCu₄Sn-type cubic structure (F43m). The

suggested antiferromagnetic ordering was confirmed, and the ground state is thought to be magnetic as proposed by previous paper. In inelastic scattering measurement, clear crystal-field excitation peaks are observed. Considering the cubic point symmetry at Pr sites, four eigenstates are expected. The observed results of intensities as well as excitation energies imply that all the states locate in the excitation energy range less than 10 meV. Such small crystalfield level split may support fluctuation of electronic state mediated by hybridization between 4f and conduction electrons. In addition, a broad response is also seen in the spectrum. Although its origin has not been clarified yet, PrCu₄Au may take double features of itinerant and localized felectrons.

1-3-6

Crystal structure and Magnetic Property of Pr_xFe₄Sb₁₂

K. Iwasa¹, T. Orihara¹, Y. Murkami¹, K. Kuwahara², H. Sugawara³ Tohoku Univ.¹, Ibaraki Univ.², Kobe Univ.³

Rare-earth filled skutterudite compounds have been studied for various phase transitions of 4f electron states. $Pr_xFe_4Sb_{12}$ has been considered to exhibit magnetic ordering at around 4 K. It is suggested that not only Pr 4f but also Fe 3d electrons give the ordered moment (N. P. Butch et al.: Phys. Rev. B 71 (2005) 214417), since the magnitude of effective magnetic moment estimated from the high temperature magnetic susceptibility is larger than that of Pr^{3+} free ion. The ordered structure of the two kinds of magnetic moments depending on the Pr filling has been unsolved yet. It is notable that the magnetic phase transition is reported to disappear in case of full occupation of the Pr-ion sites (x = 1). The effect of Pr filling to the magnetic ordering has also not been explained.

We performed neutron scattering experiment using the triple-axis spectrometer TOPAN (6G) in order to reveal Prion crystal field levels by using powdered simple and the four-circle diffractometer FONDER (T2-2) to investigate the crystal and magnetic ordered structures by using a single crystalline sample. In this year, we measured crystal field levels in the high-pressure synthesis sample, in order to compare that in the unfilled sample by the so-called Sb-self method. The sample for FONDER was synthesized by the flux method, and the Pr concentration x is expected to be less than unity (x = 0.7 - 0.9), as was reported in the previous reports.

Figure shows inelastic spectra observed at TOPAN. We succeeded in observing two magnetic excitation peaks at 2.4 and 11 meV. The peak positions are almost equivalent with those of the x 1 one synthesized by K. Tanaka *et al.* using the highpressure method (J. Phys. Soc. Jpn. 76 (2007) 103704) but also of the x < 1 sample reported by E. Bauer et al. (J. Magn. Magn. Mater. 310 (2007) 286). Therefore, it is still under controversial that the magnetic nature of 4f electrons localized at Pr ions does not strongly depend on the Pr ion concentration or not. We are now trying to analyze the intensity to discuss the crystal field level schemes and their role on the magnetic ordering. In the Experiment at FONDER, we succeeded in observing many reflections that is expected to allow the crystal structure determination (Pr concentration). In addition, the increase of fundamental reflection intensities with decreasing temperature thorough the transition temperature. This results is consistent with the previous study, and the magnetic ordering pattern is composed of ferromagnetic component. However, the magnetic ordering signal depends on samples. We will carry out a subsequent measurement with longer wave length setup of FONDER to focus the low-*Q* magnetic intensities.

Fig. 1. Magnetic excitation spectra of $Pr_xFe_4Sb_{12}$ synthesized by the high-pressure method and $La_xFe_4Sb_{12}$ at 3.5 K.

Magnetic Excitations of CeRh1-xCoxIn5

M. Yokoyama(A), Y. Ikeda(B), D. Nishikawa(B), H. Amitsuka(B), K. Tenya(C) (A)Faculty of Science, Ibaraki University, (B)Graduate School of Science, Hokkaido University, (C)Faculty of Education, Shinshu University

The relationship between antiferromagnetic (AF) and superconducting (SC) orders in CeRh1-xCoxIn5 (HoCoGa5-type tetragonal structure) has been intensively investigated in recent years [1-5]. It is found that the transition temperature TN of the incommensurate-AF order (the propagation vector: qh=(1/2, 1/2, 0.297)) seen in pure CeRhIn5 is weakly reduced by doping Co, and then approaches zero at the quantum critical point: xc ~ 0.8. At the same time, the SC phase develops above x ~ 0.4. The neutron scattering experiments revealed that a commensurate AF order with a modulation of qc1=(1/2, 1/2, 1/2)appears in the intermediate x range [2-4]. These results suggest that the nature of the AF correlation varies by doping Co, and it may significantly affects the evolution of the SC order. To clarify the magnetic instability involved in small and rich Co concentrations, we have investigated the characteristics of magnetic excitations for CeRh1xCoxIn5 by performing the inelastic neutron scattering experiments.

Single crystals of CeRh1-xCoxIn5 were grown by the In-flux technique. In accordance with the previous investigations [4], the Rh/Co concentrations x in the samples were checked by means of the electron probe microanalysis (EPMA) measurements, and we adopt the x values estimated from the EPMA measurements in this study. The samples with $x \sim 0.3$ were arranged so that the scattering plane becomes (hhl), and cooled down 0.7 K in a 3He cryostat. The inelastic neutron scattering (INS) experiments were performed on the tripleaxis spectrometers ISSP-GPTAS (4G) and ISSP-HER (C1-1) located at the research reactor JRR-3M of JAEA, Tokai.

We have observed that clear enhancements of the inelastic neutron scattering signals for the surveyed (1/2, 1/2, xi) line (0.5 <=xi <= 1) in the reciprocal space at 0.7 K. Both the magnitude and center (~ 0.4 meV) of inelastic peaks are roughly independent of xi. The inelastic peaks are reduced with increasing temperature, but still observed above TN = 3.7 K. These features are consistent with those reported for pure CeRhIn5 [6]. Our INS experiments for the samples with other Co concentrations are now in progress.

[1] V.S. Zapf et al., Phys. Rev. B 65, 014506 (2001).

[2] M. Yokoyama et al., J. Phys. Soc. Jpn. 75, 103703 (2006).

[3] S. Ohira-Kawamura et al., Phys. Rev. B 76, 132507 (2007).

[4] M. Yokoyama et al., Phys. Rev. B 77, 224501 (2008).

[5] Swee K. Goh et al., Phys. Rev. Lett. 101, 056402 (2008).

[6] N. Aso, NSL-ISSP activity report, report#227 (2007).

Phonon dynamics of iron-based superconductors

C. H. Lee(A), K. Kihou(A), K. Horigane(B), H. Eisaki(A), A. Iyo(A), M. Braden(C) and K. Yamada(B)

(A) AIST, (B) WPI Tohoku Univ., (C) Universitat zu Koln

Since the discovery of Fe-based superconductors with superconducting transition temperatures (Tc) of up to 55 K, intensive studies have been conducted to clarify the mechanism of Cooper pair formation. For example, the possibility of phonon-mediated superconductivity has been studied intensively. Calculations using the density functional perturbation theory, however, revealed very weak electronphonon coupling constants, suggesting that, within those simplified models, conventional phonon-mediated superconductivity is unlikely. Nevertheless, a mechanism involving phonons remains possible. Studies on phonon dynamics using single crystals are essential for elucidating the role of phonons in the appearance of superconductivity in Fe-based superconductors.

We found that phonon softening occurs under K doping in Ba1-xKxFe2As2 using inelastic X-ray scattering technique [1]. To clarify whether this softening is a universal phenomenon in Fe-based superconductors, it is essential to study in other samples. In this study, therefore, we measured phonon dynamics of Ba(Fe1-xCox)2As2 using inelastic neutron scattering technique.

Neutron scattering measurements were carried out using a triple-axis spectrometer, TOPAN at the JRR-3 reactor of JAEA at Tokai. The final neutron energy was fixed at Ef=14.8 meV using a pyrolytic graphite (PG) monochromator and analyzer. The sequences of horizontal collimators were 40'-60'-S-60'-B where S denotes the sample position. A single crystal of Ba(Fe1-xCox)2As2 was grown by the selfflux method using excess FeAs. All measurements were conducted at room temperature.

We measured phonon dispersion along

[100] and [110] directions. Phonon dispersion was analyzed using a Born-von Karman force-constant model. The longitudinal and transverse force constants of 11 atomic pairs were chosen as fitting parameters, and the calculated energies were fitted to the measured data. As results we could not find any difference between non-doped BaFe2As2 and superconducting Ba(Fe1-xCox)2As2. The softening can be observed only in K doping samples. This suggests that the softening in Ba1xKxFe2As2 is due to reduction of interatomic force constants around (Ba,K) sites caused by substitution of divalent Ba by monovalent K ions.

[1] C. H. Lee et al., J. Phys. Soc. Jpn. 79, 014714 (2010).

Relationship between crystal structure and superconductivity in iron-based superconductors

C. H. Lee(A), K. Kihou(A), H. Eisaki(A), A. Iyo(A), M. Braden(B) and K. Yamada(C) (A) AIST, (C) Universitat zu Koln, (B) WPI Tohoku Univ.

Recent discovery of superconductivity in LaFeAsO1-xFx at superconducting temperature of Tc=26K has triggered the energetic study of searching a new superconductor. Soon, it has been found that fluorinefree LnFeAsO1-y (Ln=lanthanoid) samples show superconductivity with maximum Tc=55K. As the Tc is very high, their cooper pairing mechanism could not be explained by the conventional BCS theory. To elucidate the mechanism, their crystal structure should be determined.

The crystal structure of LnFeAsO is characterized by two kinds of stacking layers LnO and FeAs. The Fe atom is surrounded by four As atoms in the FeAs layer forming a FeAs4 tetrahedron. Charges are transferred from LnO to FeAs layers by substitution or introduction of defect of oxygen atoms. We focus our attention on crystal structure of FeAs layers, since superconductivity is induced in FeAs layers.

We conducted neutron diffraction measurements at HERMES of the Institute for Materials Research, Tohoku University, installed at the JRR-3 reactor of JAEA at Tokai. The obtained spectra were analyzed by the Rietveld method. Polycrystalline samples of LnFeAsO1-y (Ln=La, Ce, Pr, Nd, Tb and Dy) were used for the measurements.

We have clarified the superconducting phase diagram of LaFeAsO1-y and NdFeAsO1-y by estimating the oxygen content. Both systems show superconductivity above y~0.06. But, doping dependence of Tc is different. In LaFeAsO1-y, Tc attains maximum values at around y=0.12 and decreases with increasing y. Whereas in NdFeAsO1-y, Tc increases till y=0.26. It seems that there is no universal relationship between Tc and carrier concentration.

Figure 1 shows As-Fe-As bond angle as

a function of Tc in various pnictide superconductors [1]. The parameters of the samples showing almost maximum Tc in each system are selected to eliminate the effect of carrier doping. The obtained lanthanoid dependence of crystal structure parameters in LnFeAsO1-y system shows that FeAs4tetrahedrons form a regular shape around NdFeAsO1-y. Obviously, Tc becomes maximum when FeAs4-tetrahedrons form a regular shape, indicating that there is a strong correlation between crystal structure and superconductivity.

[1] C. H. Lee et al., J. Phys. Soc. Jpn. 77, 083704 (2008).

[2] C. H. Lee et al., J. Phys. Soc. Jpn. 77, 44 (2008) Suppl. C.

Fig. 1. Tc vs As-Fe-As bond angle α for various pnictide superconductors. Crystal structure parameters of samples exhibiting maximum Tc in each system are plotted. The vertical dashed line indicates the bond angle of a regular tetrahedron (α = 109.47).

Substituting dependence of the ordered moment in BaFe2(As,P)2

S. Ibuka, K. Matan and T. J. Sato NSL, ISSP, University of Tokyo and JST-TRIP

One major difference between conventional and high-Tc-cuprate superconductors is the proximity to a competing magnetically ordered state in the latter, and it has long been believed that magnetic fluctuations could replace the role of phonons in mediating an electronpairing interaction. This mechanism could give rise to more tightly bound Cooper pairs, elevating the transition temperature. The recent discovery of iron pnictide superconductors [1] with T_c exceeding 50 K [2] in close proximity to antiferromagnetic order reinvigorates this idea.

BaFe2As2 is one of the parent compounds of iron pnictide superconductors, which shows antiferromagnetic transition at $T_N = 140$ K. In the early reports, it was shown that the transition temperature was suppressed by carrier doping and superconductivity was induced in the proximity to the vanishing point of the magnetic transition as the case of hole doping in (Ba,K)Fe₂As₂ [3] and electron doping in Ba(Fe,Co)₂As₂ [4]. After that, a novel report [5] came in which showed the superconductivity at $T_c = 30$ K induced by isovalent substitution in BaFe₂(As_{0.68}P_{0.32})₂. The report has modified our common knowledge that varing the electron density is one of the essential way to break the magnetic stability. In this system, we may obtain experimental information which is kept away from the effect of carrier change and the data will become a desirable source to discuss the mechanism of the superconductivity theoretically in detail. Substituting dependency of the size of the ordered moment and the temperature development of it in the antiferromagnetic phase are basical physical quantities to study the role of magnetism in the superconductivity.

Then we made three powder samples of BaFe₂(As_{1-x}P_x)₂ (x = 0.06, 0.15, 0.35) and

have performed the magnetic elastic neutron scattering study at ISSP-GPTAS the triple-axis spectrometer. The samples were made by solid phase reaction at 1323 K for more than 72 h in an electric furnace. The data shown in Fig. 1 is a temperature dependence of the peak intensity at antiferromagnetic position $Q = (103)_{Orth}$ taken with $E_i = 14.7$ meV and the collimation of 40'-PG-40'-S-40'-PG-Open in a doubleaxis mode. For x = 0.06 and 0.15, antiferromagnetic transition was observed at $T \sim 125,90$ K respectively. On the other hand, for x = 0.35, only which shows superconductivity in the three samples, intensity increase was not observed in the accuracy of this experiment. At lowest temperature (T = 3 K), intensity increse was not observed even in other *Q* positions, either. From these results, we found that the ordered moment was certainly suppressed by P substitution, and it was completely suppressed and vanished at x = 0.35 superconductor at all.

[1] Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008).

[2] R. Zhi-An et al., Chinese Phys. Lett. 25, 2215 (2008).

[3] M. Rotter et al., Phys. Rev. Lett. 101, 107006 (2008).

[4] A. S. Sefat *et al.*, Phys. Rev. Lett. 101, 117004 (2008).

[5] S. Jiang et al., J. Phys.: Cond. Mat. 21, 382203 (2009).

Fig. 1. Temperature dependence of magnetic intensity at Q = (103).

Competition or coexistence of multiple order parameters in the heavy fermion antiferromagnet $CeRh_{1-x}Ir_xIn_5$

K. Deguchi¹, N. Aso², K. Wakishima¹, Y. Ishikawa¹, Y. Maeda¹, N. K. Sato¹, H. Yoshizawa³ Nagoya Univ.¹, Univ. of the Ryukyu², NSL-ISSP, Univ. of Tokyo.³

The heavy-fermion family of CeMIn₅, where M represents Ir, Co, or Rh, has attracted much interest on account of the relationship between superconductivity and magnetism. CeCoIn₅ and CeIrIn₅ are superconductors with SC transition temperatures of $T_c = 2.3$ and 0.4 K, respectively. CeRhIn₅ orders in an incommensurate antiferromagnetic phase with the modulation of q = (1/2, 1/2, 0.297) below $T_{\rm N}$ = 3.8 K [1]. Interestingly, a new commensurate antiferromagnetic order with q = (1/2, 1/2, 1/2) was found in a *x*-range of 0.25-0.6 for $\text{CeRh}_{1-x}\text{Ir}_x\text{In}_5$, and these two commensurate and incommensurate magnetic orders coexist with superconductivity [2]. A similar coexistence was also reported in CeRh_{0.6}Co_{0.4}In₅ [3]. Such an unusual coexistence of three different types of cooperative ordered states is quite unique among unconventional superconductors. However, for consideration of results in the CeRh_{1-x}Co_xIn₅ system, it is under debate if there is a coexistence region of the commensurate and incommensurate orders in a phase diagram [3, 4]. To elucidate the mechanism of the unconventional superconductivity in the CeMIn₅ systems, therefore, it is important to examine their magnetic properties in more detail.

The key of this work is to reduce the inhomogeneity arising from a distribution of x because our preliminary results of thermodynamic experiments using single crystals of CeRh_{1-x}Ir_xIn₅ showed that the inhomogeneity may mislead us to an incorrect understanding of a phase diagram of the system. To avoid this, we intentionally prepared powdered polycrystalline samples of CeRh_{0.6}Ir_{0.4}In₅ by melting single crystals of CeRhIn₅ and CeIrIn₅ with a tetra-arc furnace under a high-purity argon atmosphere. The sample was put in a vanadium can with double-cylinder structure, and cooled down to 0.7 K using a ³He cryostat [5]. Neutron diffraction experiments were performed at ISSP/GPTAS installed in the research reactor JRR-3.

Figure 1 shows powder pattern of CeRh_{0.6}Ir_{0.4}In₅ at T = 0.75 K ($< T_N$) and 10 K (> $T_{\rm N}$), obtained at GPTAS with the incident energy $E_i \sim 13.7$ meV. We have found the Bragg reflection at an commensurate reciprocal point q =(1/2, 1/2, 1/2) below $T_{\rm N}$, which are truly of magnetic origin since they disappear above T_N . It is noteworthy that an incommensurate magnetic order at reciprocal point q = (1/2, 1/2, 0.297) could not be detected within experimental resolutions, in contrast to previous studies with single crystals [2]. To clarify coexistence of different types of cooperative ordered states an mechanism of the unconventional superconductivity in the CeMIn₅ systems, We now try to investigate other $\text{CeRh}_{1-x}\text{Ir}_x\text{In}_5$ with polycrystalline samples. Figure 1 shows a powder pattern of CeRh_{0.6}Ir_{0.4}In₅ at T = 0.75 and 10 K, obtained at GPTAS with the incident energy $E_i \sim 13.7$ meV. According to a previous report [2], the Néel temperature is about 3.6 and 2.6 K for the incommensurate and commensurate order, respectively. We have found the Bragg reflection at the commensurate reciprocal point q = (1/2, 1/2, 1/2), which are truly of magnetic origin since it disappears above $T_{\rm N} \sim 2.7$ K. It is noteworthy that the incommensurate magnetic order at reciprocal point q = (1/2, 1/2, 0.297) was not detected within experimental resolutions. This result seems contrary to the previous neutron scattering experiments with single crystals [2], but consistent with our
thermodynamic experiments.

To clarify the coexistence of the different types of cooperative ordered states and to reveal the mechanism of the unconventional superconductivity in the CeMIn₅ systems, a further experiment is in progress for other compositions of CeRh_{1-x}Ir_xIn₅.

References

- [1] P. G. Pagliuso *et al.*, *Phys. Rev. B* **64**, 100503 (2001).
- [2] A. D. Christianson *et al.*, *Phys. Rev. Lett.* **95**, 217002 (2005).
- [3] M. Yokoyama et al., J. Phys. Soc. Jpn. 75, 103703 (2006).
- [4] S. Ohira-Kawamura *et al.*, *Phys. Rev. B* **76**, 132507 (2007).
- [5] TAIYO NIPPON SANSO CORPORA-TION. Tokyo 142-8558, Japan.

Fig. 1. Powder pattern of $CeRh_{0.6}Ir_{0.4}In_5$ obtained at T = 0.75 and 10 K.

1-3-12

Pressure-induced release of magnetic frustration in a quasi-kagome lattice YbAgGe

K. Umeo¹, H. Kubo², T. Onimaru², K. Katoh³, N. Aso⁴ and T. Takabatake²

¹ Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima Univ.,

1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526

² Department of Quantum Matter, ADSM, Hiroshima Univ.,

1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530

³ Department of Applied Physics, National Defense Acadeny, Yokosuka, 239-8686

⁴ Institute for Solid State Physics, The University of Tokyo, 106-1 Shirakata, Tokai, 319-1106

The heavy-fermion antiferromagnet YbAgGe with the ZrNiAl-type structure undergoes two magnetic transitions at T_{M1} = 0.8 K with a propagation vector \vec{k}_1 = [0, 0, 0.324] and $T_{\rm M2}$ = 0.65 K with \vec{k}_2 = [1/3, 0, 1/3].[1, 2] A tail in the specific-heat C(T) extended above T_{M1} was attributed to effects of magnetic frustration inherent to the quasi-Kagome lattice of the Yb sublattice.[1] Recently, an anomalous phase diagram of YbAgGe under pressures has been constructed from the C(T) and resistivity measurements.[3, 4] For P > 0.5GPa, the two transitions at T_{M1} and T_{M2} merge to one transition at $T_{\rm M}$.[3] For 0.5 $< P < P^* = 1.6$ GPa, $T_{\rm M}$ remains constant, while $T_{\rm M}$ increases linearly above P^* . The magnetic entropy at $T_{\rm M}$ rises for $P > P^*$, while the Kondo temperature does not change.[4] These findings suggest that the sudden rise of $T_{\rm M}(P)$ for $P > P^*$ is a consequence of the release of the magnetic frustration.

In the present work, in order to determine magnetic structures at ambient pressure, we performed neutron diffraction experiments. Measurements were preformed on a single crystalline sample prepared by the Bridgman method. It was cooled down to 35 mK with a ³He-⁴He dilution refrigerator.

Fig. 1 shows the temperature dependence of the integrated intensity of the magnetic peaks at $\mathbf{Q} = (2/3, 0, 1/3)$ and (1, 0, 0.327). The intensity of the peak at (1, 0, 0.327), which includes background contribution, appears at 0.82 K (> T_{M1}) and shows a maximum at 0.65 K (= T_{M2}). Below

the temperature, the intensity of the peak at (1, 0, 0.327) rapidly decreases, while the intensity of the peak at (2/3, 0, 1/3) starts increasing at 0.65 K (= T_{M2}) and saturates below 0.6 K. Between 0.6 K and 0.65 K both the peaks were observed, indicating that the transition at T_{M2} is of first order.

In $T_{M2} < T < T_{M1}$, the magnetic structure was determined by the model proposed by the group theory. This structure has a distorted 120° one on the *c* plane, where the moments are modulated along the *c*axis. This magnetic structure is characteristic feature of the magnetic frustrated compounds. We are now in progress to analyse the data to determine the magnetic structure below T_{M2} .

References

- K. Umeo *et al.*: J. Phys. Soc. Jpn, 73 (2004)537.
- [2] B. Fåk et al.: Physica B 378-380 (2006)669.
- [3] K. Umeo et al.: Physica B 359-361 (2005)130.
- [4] H. Kubo et al.: J. Phys. Soc. Jpn, 77 (2008)023704.

Fig. 1. *T* dependence of the integrated intensity of the magnetic peaks at \mathbf{Q} =(2/3, 0, 1/3) and (1, 0, 0.327). The dotted lines are guides to the eye.

Magnetic structure of Nd1/3Sr5/3MnO4

Y. Oohara, M. Kubota and H. Kuwahara ISSP, Univ. of Tokyo, PF KEK and Fac. of Sci. & Tech, Sophia Univ.

Orbital order brings about complex magnetic order in manganite compounds. In Nd1/4Mn7/4MnO4, the linear orbital order exhibits, which is responsible for the linear ferromagnetic chain order. There are Bragg intensities at (1/2 0 1/2) and identical points to that. On the other hand, the zig-zag orbital order exhibits in Nd1/3Mn5/3MnO4. Thus, we expect the different-type of magnetic order of Nd1/4Mn7/4MnO4.

Neutron Diffraction measurements were performed with ISSP triple-axis spectrometers, HQR at T11 and HER at C11.

Figure shows powder diffraction patterns of d1/3Mn5/3MnO4. The magnetic signal shows diffuse-like shape. There are peaks near (1/200), (1/201), and (1/202). It demonstrates that the magnetic order is two dimensional and the similar magnetic structure as Nd1/4Mn7/4MnO4 in the c-plane, but becomes incommensurate order, which the frustration originated from the orbital zig-zag order may be responsible for.

Fig. 1. Powder diffraction pattern of Nd1/3Mn5/3MnO4 at 4K.

Competition or coexistence of multiple order parameters in the heavy fermion antiferromagnet $\text{CeRh}_{1-x}\text{Ir}_x\text{In}_5$

K. Deguchi¹, N. Aso², K. Wakishima¹, Y. Ishikawa¹, Y. Maeda¹, N. K. Sato¹, H. Yoshizawa³ Nagoya Univ.¹, Univ. of the Ryukyu², NSL-ISSP, Univ. of Tokyo.³

The heavy-fermion family of CeMIn₅, where M represents Ir, Co, or Rh, has attracted much interest on account of the relationship between superconductivity and magnetism. CeCoIn₅ and CeIrIn₅ are superconductors with SC transition temperatures of $T_c = 2.3$ and 0.4 K, respectively. CeRhIn₅ orders in an incommensurate antiferromagnetic phase with the modulation of q = (1/2, 1/2, 0.297) below $T_{\rm N}$ = 3.8 K [1]. Interestingly, a new commensurate antiferromagnetic order with q = (1/2, 1/2, 1/2) was found in a *x*-range of 0.25-0.6 for $\text{CeRh}_{1-x}\text{Ir}_x\text{In}_5$, and these two commensurate and incommensurate magnetic orders coexist with superconductivity [2]. A similar coexistence was also reported in CeRh_{0.6}Co_{0.4}In₅ [3]. Such an unusual coexistence of three different types of cooperative ordered states is quite unique among unconventional superconductors. However, for consideration of results in the CeRh_{1-x}Co_xIn₅ system, it is under debate if there is a coexistence region of the commensurate and incommensurate orders in a phase diagram [3, 4]. To elucidate the mechanism of the unconventional superconductivity in the CeMIn₅ systems, therefore, it is important to examine their magnetic properties in more detail.

The key of this work is to reduce the inhomogeneity arising from a distribution of x because our preliminary results of thermodynamic experiments using single crystals of CeRh_{1-x}Ir_xIn₅ showed that the inhomogeneity may mislead us to an incorrect understanding of a phase diagram of the system. To avoid this, we intentionally prepared powdered polycrystalline samples of CeRh_{0.6}Ir_{0.4}In₅ by melting single crystals of CeRhIn₅ and CeIrIn₅ with a tetra-arc furnace under a high-purity argon atmosphere. The sample was put in a vanadium can with double-cylinder structure, and cooled down to 0.7 K using a ³He cryostat [5]. Neutron diffraction experiments were performed at ISSP/GPTAS installed in the research reactor JRR-3.

Figure 1 shows a powder pattern of $\text{CeRh}_{0.6}\text{Ir}_{0.4}\text{In}_5$ at T = 0.75 and 10 K, obtained at GPTAS with the incident energy $E_i \sim 13.7$ meV. According to a previous report [2], the Néel temperature is about 3.6 and 2.6 K for the incommensurate and commensurate order, respectively. We have found the Bragg reflection at the commensurate reciprocal point q = (1/2, 1/2, 1/2), which are truly of magnetic origin since it disappears above $T_{\rm N} \sim 2.7$ K. It is noteworthy that the incommensurate magnetic order at reciprocal point q = (1/2, 1/2, 0.297)was not detected within experimental resolutions. This result seems contrary to the previous neutron scattering experiments with single crystals [2], but consistent with our thermodynamic experiments.

To clarify the coexistence of the different types of cooperative ordered states and to reveal the mechanism of the unconventional superconductivity in the CeMIn₅ systems, a further experiment is in progress for other compositions of CeRh_{1-x}Ir_xIn₅.

References

- P. G. Pagliuso *et al.*, *Phys. Rev. B* 64, 100503 (2001).
- [2] A. D. Christianson *et al.*, *Phys. Rev. Lett.* 95, 217002 (2005).
- [3] M. Yokoyama et al., J. Phys. Soc. Jpn. 75, 103703 (2006).
- [4] S. Ohira-Kawamura *et al.*, *Phys. Rev. B* 76, 132507 (2007).
- [5] TAIYO NIPPON SANSO CORPORA-TION. Tokyo 142-8558, Japan.

Fig. 1. Powder pattern of $CeRh_{0.6}Ir_{0.4}In_5$ obtained at T = 0.75 and 10 K. Arrows show the expected Bragg-peak positions of incommensurate and commensurate antiferromagnetic orders.

Pressure induced superconductivity in SrFe2As2

K. Munakata(A,C), S. Ibuka(B, C), H. Ishida(B,C), K. Matan(B, C), K. Ohgushi(A, C), M. Nishi(B), Y. Uwatoko(A,C), T. J. Sato(B, C) (A) ISSP, (B) ISSP-NSL, (C) TRIP-IST

In 2008, a group in Japan reported high-Tc superconductivity in the Fe-based layered material LaFeFAsO [1]. Since then, a boom of the superconductivity research has been continuing all over the world to date. Soon after the discovery, it was found that the superconducting phase is situated in vicinity of the antiferromagnetically ordered phase, which suggests a close relation between the superconductivity and antiferromagnetic fluctuation, as has been suggested in the cuprate superconductors. For such a case, it is crucial to know if the superconducting phase can coexist with the antiferromagnetic phase or not. To date, however, this is not clear, since most of the phase diagram studies have been carried out in the carrier doped systems, where chemical inhomogeneity is inevitable. We therefore perform neutron diffraction study under hydrostatic pressure, where such chemical inhomogeneity is absent in principle.

The neutron diffraction experiment has been performed using single crystals of SrFe2As2 grown by the self-flux method [2]. The diffraction experiment has been performed using the triple-axis spectrometer ISSP-GPTAS, operated in the doubleaxis mode. The palm cubic anvil cell was used to generate a hydrostatic pressure up to 7 GPa; to maintain good hydrostaticity and to reduce the background, we have employed deuterated glycerol as a pressure medium.

Shown in Fig. 1 is the resulting pressure dependence of the ordered magnetic-moment size. This has been obtained by using the integrated intensity of the 103 reflections, normalized to that of the nuclear Bragg intensity at the 206 position. It can be clearly seen that the long-range ordered moment disappears around 5 GPa, where the coexistence of the antiferromagnetic and superconducting domains is suggested in the NMR study [3]. Our result clearly excludes the possibility of coexisting long-range antiferromagnetic order of the stripe type and the superconducting phase. By combining the NMR result, it may be inferred that the different type of the long-range antiferromagnetic order establishes at higher temperature, or the antiferromagnetic order becomes short-ranged. Further study is in progress to clarify this issue.

[1] Y. Kamihara et al., J. Am. Chem. Soc. 130 (2008) 3296.

[2] R. Morinaga et al., Jpn. J. Appl. Phys. 48 (2009) 013004.

[3] K. Kitagawa et al., Phys. Rev. Lett. 103 (2009) 257002.

Fig. 1. Pressure dependence of the ordered moment size determined using the integrated intensity of the 103 reflection.

1. 中性子散乱 4)非晶質·液体

1. Neutron Scattering 4) Amorphous • Liquid

This is a blank page.

1-4-1

Mixing State of Benzene Solutions of Imidazolium-based Ionic Liquid, C12mim+TFSA-

T. Shimomura, T. Takamuku Saga University

Room-temperature ionic liquids (RT-ILs) have unique properties, such as extremely low vapor pressure, thermal stability, nonflammability, high polarity, and electroconductivity. However, their high viscosity is a serious problem for application of ionic liquids in many fields. Thus, RT-ILs are frequently used by mixing with conventional molecular liquids, such as water, methanol, and acetonitrile. In the present work, an effect of pi-pi interaction on the mixing state of benzene solutions of 1-dodecyl-3-methylimidazolium bis(trifluoromethanesufonyl)amide

(C12mim+TFSA-) has been elucidated using small-angle neutron scattering (SANS) technique.

C12mim+TFSA- was synthesized by a conventional method [1]. Sample solutions were prepared by mixing C12mim+TFSA-with deuterated benzene (C6D6) at various benzene mole fractions XC6D6. SANS intensities of the sample solutions at 298 K were measured on the SANS-U spectrometer with the camera lengths of 1, 4 and 8 m.

Figure 1 shows the Ornstein-Zernike correlation lengths Xi of C12mim+TFSA-C6D6 solutions estimated from the SANS spectra as a function of XC6D6. The Xi values of C12mim+TFSA-C6D6 solutions gradually increase with increasing XC6D6 from 0.9 and reach a maximum at XC6D6 = 0.99. However, the Xi value of the solution decreases at XC6D6 = 0.995. Thus, C12mim+TFSA- is heterogeneously mixed with C6D6 in the very narrow mole fraction range of 0.9 < XC6D6 < 0.995 with the maximum at XC6D6 = 0.99. The present SANS results, together with the results from ATR-IR, NMR, and LAXS measurements, suggest that C12mim+TFSA- form clusters in the solutions. The pi-pi interaction between the imidazolium ring and C6D6 may stabilize C12mim+TFSA- clusters in the solutions. However, the clusters are disrupted above XC6D6 = 0.99 due to the solvation of C12mim+ and TFSA- by the large amount of C6D6.

Reference

[1] Nockemann, P.; Binnemans, K.; Driesen, K. Chem. Phys. Lett., 415 (2005) 131.

Fig. 1. Figure 1. Ornstein-Zernike correlation lengths Xi of C12mim+TFSA–C6D6 solutions as a function of C6D6 mole fraction.

1 - 4 - 2

Intermolecular Structure between Urea Molecule and Metal Ions in Concentrated Aqueous Solutions

Kameda Y., Miyazaki T., Onodera S., Amo Y., Usuki T. Department of Material and Biological Chemistry, Faculty of Science, Yamagata University

Neutron diffraction measurements were carried out for 6Li/7Li, 35Cl/37Cl, and 14N/15N isotopically substituted concentrated aqueous urea solutions involving *LiCl and Na*Cl salts in order to obtain information concerning intermolecular structure between the urea molecule and coexisting ions in concentrated aqueous solutions.

sample solutions with dif-Six ferent isotopic compositions, T (Na35Cl)0.05[(14ND2)2C=O]0.1(D2O)0.85, II. (Na natCl)0.05[(14ND2)2C=O]0.1(D2O)0.85, III. (Na natCl)0.05[(15ND2)2C=O]0.1(D2O)0.85, molecule. IV. (6LiCl)0.1[(14ND2)2C=O]0.1(D2O)0.8, (7LiCl)0.1[(14ND2)2C=O]0.1(D2O)0.8, V and VI. (7LiCl)0.1[(15ND2)2C=O]0.1(D2O)0.8, were employed in the present study.

Diffraction measurements were made at 298 K using ISSP diffractometer, 4G (GP-TAS) installed at the JRR-3M research reactor with an incident neutron wavelength of 1.090 A. Scattered intensities were collected over the angular range of 3 < 2theta < 118 deg. After corrections for the background, absorption, multiple and incoherent scatterings, observed scattering intensities were converted to the scattering cross sectins.

The first-order-difference functions [1] were evaluated by a numerical difference between observed scattering cross sections for sample solutions with different isotopic compositions. Fourier transform of the difference function gives the distribution function around the substituted atom. For NaCl-urea solutions, two distribution functions, GCl(r) (around Cl-) and GN(r) (around N atom of urea), were successfully determined as indicated in Fig. 1a. Distribution functions, GLi(r) (around Li+) and GN(r) (around N aton of urea), were obtained as shown in Fig. 1b.

Preliminary analysis of the observed GCl(r) (Fig. 1a) indicates that there are ca. 6 nearest beighbor water molecules around the chloride ion. The value agrees well with that repoted for various aqueous solutions, which implies that the first hydration shell of the chloride ion is well maintained in the presence of the urea molecule. On the other hand, relatively small second peak appearing in the distribution function around the lithium ion, GLi(r) (Fig. 1b) may suggest that the first hydration shell of Li+ is significantly affected by coexisting urea

Reference

[1] J. E. Enderby, G. W. Neilson, "Water, A Comprehensive Treatise", Plenum press, New York (1979), Vol. 6, p. 1.

Fig. 1. Fig. 1. a) GCl(r) and GN inter(r) functions observed for NaCl-urea-D2O solutions. b) Distribution functions, GLi(r) and GN inter(r) functions observed for LiCl-urea-D2O solutions.

1-4-3

Diffusional dynamics of water molecules in lower alcohol aqueous solutions at low temperature.

K. Maruyama(A), M. Nakada(B), T. Kikuchi(C), and O. Yamamuro(C) (*A*)*Fac. Sci.*, *Niigata Univ.*, (*B*) *Grad. Sch.*, *Niigata Univ.*, (*C*)*ISSP-NSL Univ. Tokyo*

We carried out the quasielastic neutron scattering (QENS) measurements for npropyl alcohol aqueous solutions by using High Resolution Clod Neutron Scattering Spectrometer AGNES. The sample were mixtures of deutelized propanol (C3D7OH) and light water (H2O), and the compositions of n-propyl alcohol xp were 0.0 to 0.17. The self diffusion of water molecules was mainly observed because of the vary large incoherent scattering cross section of H. The measurements were carried out with the high resolution mode of AGNES and over the temperature range of 268 to 343 K. The obtained spectra were well distinguishable from that of vanadium used as the resolution function, which means that they have enough resolution to analyze.

In order to get an information of diffusive dynamics of water molecules in npropyl alcohol aqueous solutions, we analyzed S(Q,E) 's with relaxing cage model (RCM)[1]. The agreement of fitting of experimental data with RCM analysis was good in whole E range (see fig. 1). Then we obtained diffusion coefficients D of water molecules in every measured solutions. The values of D obtained from the measurements with high resolution mode show good agreement with the values in ref. 2. This agreement is quantitatively better than the values of previous measurement with standard mode.

Figure 2 shows an Arrhenius plot of D for the solutions of xp = 0.10 and 0.17. The plot of D for pure water is also shown in this figure. The plot for xp=0.17 seems to turn down around 298 K, which suggests that the diffusive dynamics of water molecules in the solution of xp = 0.17 changes at this temperature. This result is consistent with previous result, i.e. the almost all water molecules hydrophobically hydrate to alcohol molecules or clusters at the concentration of xp = 0.17 and at the temperature of 298 K. By using high resolution mode of AGNES, we could obtain useful data for analyzing the temperature dependence of the diffusional dynamics of water molecules.

[1] M. Nakada, K. Maruyama, O. Yamamuro, and M. Misawa, J. Chem. Phys. 130 (2009) 074503.

[2] E. Hawlicka, and L. A. Woolf, J. Phys. Chem. 96 (1992) 1554.

Fig. 1. The fitting of S(Q,E) with the RCM. Fig. 2 The Arrenius plot of diffusion constant of water molecules.

1-4-4

In-situ neutron quasi-elastic scattering of meso-porous silica modified by sulfo group

T. Otomo (1), S. Takata(2), K. Kamazawa(3), S. Fujita(3), M. Kofu(4), O. Yamamuro(4) High Energy Accelerator Research Organization (KEK) (1), Japan Atomic Energy Agency (JAEA) (2), Toyota Central R&D Labs. Inc. (3), The University of Tokyo (4)

Meso-porous silica (MCM-41), which silanol groups on the surface were replaced with sulfo groups, shows high proton conductivity with low density of acid group. The purpose of this study was to reveal its proton kinetics in angstrom scale from diffusion constant, hopping distance and residential time of protons measured by neutron quasi-elastic scattering.

Quasi-elastic spectra of following samples were measured by "High-resolution mode

- " of AGNES spectrometer of ISSP.
- perfluorosulfonic acid (0%RH)
 perfluorosulfonic acid (~40%RH)
- 3) perfluorosulfonic acid (~80%RH)
- $\frac{3}{4} MCM 41 (00/ PH)$
- 4) MCM-41 (0%RH)

"RH" means relative humidity. Each sample has pores of 2-3 nm diameter and introduced proton was 1.4mmol/g. The sample temperature was at 25 C. RH was realized by adsorbing water vapor in the neutron beam. It means sample 1) \sim 3) are sample.

It was found out that even in the 0% RH sample, quasi-elastic component was observed. By increasing RH value, quasielastic components were gradually increased. On the contrast, MCM-41 (0%RH) showed no quasi-elastic intensity as expected. These results suggest that there are movable protons on the surface of perfluorosulfonic acid. It is also expected that the quasi-elastic components at high RH value consist of two components. In our previous quasi-elastic experiments of meso-porous silica (FSM-16), two components model was successful and each components represents slow diffusion water which was strongly confined by surface silanol group and first diffusion of bulk-like water.

To derive diffusion constant and other parameters further analysis is on-going. However, the statistics of spectra are poor since water contents in perfluorosulfonic acid were quite small (1/5 of FSM-16). This is unsurprising effect of introducing hydrophobic group. And the adsorption rate of water vapor in the in-situ environment was quite slow: we had to consume our beam time for water adsorption. Sample environment or sample preparation should be improved to obtain better statistics.

1. 中性子散乱 5)高分子

1. Neutron Scattering 5) Polymer

This is a blank page.

Combined SANS, WANS, and Weighing Studies of Microbial Cellulose in Drying Process

Y. Zhao, S. Koizumi and T. Hashimoto

Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

It is well known that the microbial cellulose (MC) is exceptionally pure, containing no hemicellulose, lignin or other substances typical of plant cellulose. Features that make MC useful for applications include its high elasticity, which is especially important in the case of medical dressings, highly crystalline structure, and superior mechan-Additionally, MC has high ical strength. water holding capacity, and is composed of trace amount of cellulose microfibrils and large amount of water. Due to these advantages, MC has been used as electronic paper display, metal catalysts carrier, acoustic membranes in speakers, artificial blood vessels and wound dressing. We studied the structural change of the microbial cellulose in the drying process by means of combined timeresolved measurements of small-angle neutron scattering (SANS), wide-angle neutron scattering (WANS), and weighing, as schematically illustrated in Fig.1. Combining the three Tr-techniques, we are able to observe the structural change of the cellulose network in two different length scales on a rigorously common time scale, e.g., the changes in microscopic structure (the concentration fluctuations of cellulose fibrils and the air voids generated upon drying), the geometry and structure change in mesoscopic scale (the size and total weight of the specimen, the water concentration or hydrogen density in the scattering volume), and interrelationships between the structural changes. We found the drying process is divided into three time regions, defined by Region I, II and III. In Region I, 3-dimensional shrinkage occurs and the weight loss is fast. While in Region II, only 1-demensional shrinkage is observed, hence the weight loss slows down. In Region III, all changes stop, indicating the drying process is over, however, still partial of water

remains, which is believed to be bound water. We observe that the microscopic structure of cellulose fibrils itself, at q-range (q denotes magnitude of scattering vector) covered in this study, does not change upon drying, but the amount of air voids does. In addition, the drying ways are found to influence the size of the air voids dramaticly. The faster the drying process is, the larger the air voids are. To date, there is no study so far that uses such a combination of real-time methods as this study does on the same single batch of cellulose system. Owning to this unique experimental method, all the experimental findings may be directly observed unequivocally. The results imply the followings. Deuterium labeling medium makes the drying process completely visible. The layer-bylayer structure of the cellulose network brings about the change from 3-dimensional shrinkage to 1-dimensional shrinkage upon drying. Drying ways determine the size of air voids. It is intriguing to note that this study of timechange in hierarchical structure levels of a system, offers a primitive example of information transmittance among different structure levels, which is important in living biological systems in general.

Figure 1: Schematics of experimental setup.

原子炉:JRR-3 装置:SANS-J(C3-2) 分野:中性子散乱(高分子)

Distribution and Accumulation of Water in the Polymer Electrolyte Fuel Cell Performed by Small-Angle Neutron Scattering

A. Putra, D. Yamaguchi and S. Koizumi

Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

Introduction. During an operation of polymer electrolyte fuel cell (PEFC), water is generated in individual cell elements as a result of electrochemical reaction, transportation and exclusion of water. Distribution of the water in the fuel cells directly affects an operation performance of PEFC. Therefore, it is crucial to determine simultaneously and insitu the distribution and accumulation of the water appeared in the individual cell elements belonging to a given single fuel cell under operation.

Method. In this study, insitu observation of aging process of a membrane electrode assembly (MEA) with an active area of $50 \ge 50$ cm was performed in the PEFC using SANS. The MEA elements consist of a Nafion 212 sandwiched with carbon-supported catalyst of Pt and Pt-Ru for cathode and anode ¹⁾. The PEFC temperature and dew-points of the anode and the cathode was controlled at 80° C. The flow rates of hydrogen and air were set at 180 and 800 ml/min. The current density was increased step-wisely from 0 to 920 mA/cm^2 with duration of 60 s at each current density. The SANS measurements was performed on the operating PEFC using the focusing and polarizing SANS spectrometer (SANS-J-II) at research reactor JRR-3, Japan Atomic Energy Agency, Tokai, Japan^{2) 3)}.

Result. Figure 1 shows SANS profiles of the 4^{th} aging process of an operating PEFC with increasing current densities from 0 to 920 mA/cm². Scattering maximum, is so called the " ionomer peak " correspond to the swelling of ion-cluster by water. By increasing the current density, the peak height increased and the peak position moved to the lower scattering vector, q value. These tendency indicated large amount of water was distributed and accumulated in ion channels. The q related to the magnitude of interdomain distance, L_{ion} between ion channels itself. The L_{ion} was determined from q by $L_{ion}=2$ /q. Shift of the peak to the lower q indicated increasing in L_{ion} , and as a consequence, the accumulation of water in ion channel increased. In summary, the SANS method was capable to detect, visualize and determine distribution and accumulation of water microscopically in a MEA of an operating PEFC.

Figure 1: SANS profiles obtained from the 4^{th} aging process of an operating PEFC with increasing a current density from 0 to 920 mA/cm².

References

- S. Koizumi, et al :"Focusing and polarized neutron small-angle scattering spectromeeter (SANS-J-II). The challenge of observation over length scales from angstrom to a micrometre", J. Apply. Cryst, <u>40</u>, s474(2007).
- 2) H. Iwase, et al :"A combined method of smallangle neutron scattering and neutron radiography to visualize water in an operating fuel cell over a wide length scale from nano to millimeter", Nucl. Ins. Meth. Phys. Res. A , <u>A605</u>, 95(2009).
- 3) A. Putra, et al :"In-situ observation of dynamic water behavior in polymer electrolyte fuel cell by combined method of Small-Angle Neutron Scattering and Neutron Radiography", J. Phys. Conf. Ser, *inpress*

原子炉:JRR-3 装置:SANS-J(C3-2) 分野:中性子散乱(高分子)

Characterization of Swollen Structure of High-density Polyelectrolyte Brushes in Salt Solution by Neutron Reflectivity

Y. Terayama1, M. Kobayashi2, A. Takahara*1,2,3

1Graduate School of Engineering, Kyushu University, 2Japan Science and Technology Agency, ERATO, 3Institute for Materials Chemistry and Engineering, Kyushu University

The behavior of polyelectrolyte brushes at salt solution interface is important for applications in medical materials, as these materials are in contact with blood and other body fluids containing salts. We investigated the dependence of swelling brush conformation on the ionic strength analyzed by neutron reflectivity (NR) of zwitterionic type polyelectrolyte and cationic polyelectrolyte brushes prepared by surfaceinitiated atom transfer radical polymerization of 2-(methacryloyloxy)ethyl and 2phosphorylcho line (MPC) (methacryloyloxy)ethyltri methyl ammonium chloride (MTAC), respectively.

The polyelectrolyte brushes were prepared on quartz surface. NR was measured by a multilayer interferometer for neutrons (MINE) in JRR-3 at TOKAI, using wavelength $\lambda = 0.88$ nm with an accuracy of 2.7 %. A neutron beam was irradiated from a quartz substrate to the interface between heavy water (D2O) and the polymer brush on quartz glass. The incident slit width were adjusted to maintain a 55 mm footprint size on the sample surface. The scattering vector, q, in specular reflectivity is defined by $q = (4 \pi / \lambda) \sin \theta$. The NR profiles were analyzed by fitting calculated reflectivity from model scattering length density profiles to the data using Parratt32 software.

Fig. 1 shows the NR curves and scattering length density (SLD) profiles of poly(MTAC) brush in D2O and 1.0 - 5.6 M NaCl/D2O. The SLD of poly(MTAC) brush in pure D2O was increased from 5.20 \times 10-4 to 6.36 \times 10-4 nm-2 along with the distance from the substrate. The gradient profile indicated that the polymer chains in D2O were stretched up to ca. 80 nm. When

the poly(MTAC) brush was immersed in the 5.6 M NaCl/D2O solution, the reduction in roughness and thickness of swelling brush layer was observed, as shown in Fig. 1(f). The brush layer height was 69 nm. The hydrated salt ions screened the repulsive interaction between quarternary ammonium groups of the brush, forming a more shrinked chain conformation.

On the other hand, no structural change was observed in swollen poly(MPC) brush even in a salt solution, although the NR profiles were not shown here. Poly(MPC) is a quite unique polyelectrolyte of which chain structure in a aqueous solution hardly changed by salt effect probably due to a weak intermolecular interaction of phosphorylcholine units[1].

References

(1) Matsuda Y, Kobayashi M, Annaka M, Ishihara K and Takahara A 2008, Langmuir 24 8772.

Fig. 1. Fig 1. NR curves of poly(MTAC) brush in (a) D2O, (b) 1.0 M NaCl, (c) 5.6 M NaCl in D2O, and (d)-(f) their corresponding neutron SLD profiles along with the distance from quartz surface, respectively. Scattering vector $q = 4 \pi \sin \theta / \lambda$ at $\lambda = 0.88$ nm.

Detailed analysis for shish-kebab structural formation process with small angle neutron scattering

Go Matsuba, Kazuko Kawashima, Koji Nishida and Toshiji Kanaya Yamagata University, Kyoto University

Crystallization of polymers under flows have been extensively investigated because during most polymers processing the polymers are exposed to various flows such as elongational, shear and mixed flows. Many experimental evidences have established that these flow processes can significantly affect the crystallization kinetics and final morphology. Imposed flow conditions that are temperature, shear rate and so on, are variables that affect the development of flow-induced structure and have strong impact on all processes of crystal growth and morphology. For example, when polymer crystallizes under flows, the so-called shish-kebab structure could be observed. The shish-kebab structure consists of long central fiber core (shish) and lamellar crystals (kebab) periodically attached along the shish structure. It is believed that the shish structure is a molecular basis of ultra-high modulus and ultra-high strength fiber.

For more detailed analysis of shish kebab structure, we carried out the neutron and x-ray scattering measurements in elongated PE sample of deuterated low molecular weight and ultra-high molecular weight hydrogenated PE. The long oriented structure had radius of 1 micron and length of \sim 12 micron and included about three extended chain crystals with radius of \sim 4.5 nm. The complemented analysis of neutron and x-ray beam was one of most powerful methods for clarification of complicated structure like shish-kebab. In this work, we have performed the timeresolved SANS and SAXS measurements in order to clarify the shish-kebab structure formation process in more detail especially focusing on shish formation process.

In this experiment we used two PEs to prepare a blend. One is high molecular weight hydrogenated polyethylene (HMW-h-PE) with molecular weight M_w = 2,000,000 and the other is low molecular weight deuterated PE (LMW-d-PE) with M_w = 600000, where M_w is the weightaverage molecular weight. HMW-h-PE and LMW-d-PE were dissolved in hot odichlorobenzene with antioxidant regent (2,6-t-butyl-p-cresole) to form a homogeneous solution at 145 °C under a nitrogen atmosphere. After keeping the solution at 145 °C for 2 h, it was poured into methanol to make precipitation. The blended sample was filtered from o-dichlorobenzene and rinsed with methanol. The precipitation was vacuum-dried at room temperature for several days and then hot-pressed at 170 °C for 3 min and quenched rapidly to ice/water to obtain a film about 0.5 mm thick.

Small-angle neutron scattering (SANS) measurements were performed using SANS-U spectrometer at JRR-3 reactor in JAEA, Tokai. In the SANS-U spectrometer, the scattering vector Q range was from 0.007 to 0.06 $Å^{-1}$. Small angle x-ray scattering measurements were carried out using apparatus installed at the beam-line BL-15A in Photon Factory, KEK, Tsukuba, Japan. The range of the length of scattering vector Q was 0.008 and 0.15 $Å^{-1}$.

At first we performed the structural formation process of drawing polyethylene blends with time-resolved SAXS and SANS measurements at 125° C. The shishkebab structure formation process was observed with both SAXS and SANS measurements. From 2D analysis, it was found that the isotropic spherulites become "depressed" along the elongation direction, suggesting that inter-lamella distance was expanded by the drawing process. After that, lamella crystal stacking (or kebab

formation) could be observed from SAXS and SANS measurements, while streak-like scattering profile from shish-structure was observed only in the SANS pattern. For more detailed analysis, we observed the lamella thickening. Above drawing ratio of 4, the kebab structure was disappeared, while the streak-like scattering profiles grew strongly. This suggests that polymer chains in the kebab were gradually merged into the extended chain crystals (shish-structure) on further drawing. However, the number density of shish-structure is not so high to be detected with x-ray scattering measurement, but the shish scattering was enhanced in the SANS scattering profile due to the strong scattering contrast between deuterated and hydrogenated PEs. The number of shishstructure was then evaluated from these SANS profiles.

1-5-4

Dynamics of nano-meter-sized domains on a vesicle

Masayuki Imai and Yuka Sakuma Ochanomizu University

Using a contrast matching technique of small angle neutron scattering (SANS) we have investigated a phase separation to liquid-disordered and liquid-ordered phases on ternary small unilamellar vesicles (SUVs) composed of deuteratedhydrogenated-unsaturated saturated, phosphatidylcholine lipids and cholesterol, where the equilibrium size of these domains is constrained to less than 10 nm by the system size. Below a miscibility temperature, we observed characteristic scattering profiles with a maximum, indicating formation of nano-meter-sized domains on the SUVs. The observed profiles can be described by a multi-domain model rather than a mono-domain model. From the fitting we extracted the domain size, number of domains on a vesicle, and the scattering contrast between the domain and the surrounding solvent. Using these parameters, we established a phase diagram of the ternary vesicle.

Vesicle structures below the Krafft temperature in a surfactant solution -Hyperswollen lamellar phase coexisting with vesicles-

Youhei Kawabata, Tomoaki Shinoda and Tadashi Kato Tokyo Metropolitan University

In a binary system consisting of surfactant and water, a hydrated solid phase is formed below the Kraft temperature, where the hydrophobic tails extend to the length with all trans. The hydrated solid phase is a two-phase coexistence of excess water and lamellar structure L_{β} of bilayers whose hydrophilic tails are interdigitated. We have ever investigated the structural formation of the hydrated solid phase in the $C_{16}E_6$ /water and $C_{16}E_7$ /water system [C₁₆H₃₃(OC₂H₄)_{6,7}OH] by means of small angle X-ray and neutron scattering (SAXS, SANS) and optical microscope. In the $C_{16}E_7$ system, hollow vesicles are formed as shown in Fig.1 (upper), which is obtained from our confocal microscope measurements. It has been found that the vesicle formation deeply depends on quenched temperature. Especially, in the last SANS proposal, we found the hyperswollen lamellar structure, whose repeat distance is about 84 nm, at 4 °C.

In this report, we investigate the temperature dependence of SANS profiles by changing various quench conditions, and inspect temperature range of the formation of the hyper-swollen lamellar structure.

The SANS experiments were carried out using the SANS-U spectrometer. The momentum transfer Q ranged over 0.003 $\leq Q \leq 0.2$ Å⁻¹ The Krafft temperature is 15 °C for the C₁₆E₇ system. Temperature was jumped to 6 ~ 14 °C. The concentration of C₁₆E₇7 is 10 wt%.

The lower figure of Fig.1 shows the temperature dependence of the SANS profiles. The profile at 4 °C was obtained in the previous experiments, and the Bragg peak can be clearly seen. On the other hand, we can not observe any swollen lamellar structures in the temperature range of $6 \sim 14$ °C. Therefore, the hyper swollen lamel

lar structure can be formed in the case of deep quenched temperature, at least below 4 °C. However, from 6 ~ 14 °C, the SANS profiles strongly depend on temperature. In the higher temperature, the SANS profiles do not depend on Q very much, while the Q dependence increases with decreasing temperature. This means that the larger structures of L_{β} domains, which are the shells of vesicles, are formed when temperature is deeply quenched.

Fig. 1. 3-D Confocal microscope image of vesicles in the $C_{16}E_7$ /water system (upper) and the SANS profiles obtained at various quenched temperature.

Order-Order Transition of Block Copolymers Swollen with Supercritical Carbon Dioxide

Hideaki Yokoyama, Masateru Ito, Koichi Mayumi, Kohzo Ito, Mitsuhiro Shibayama, Hitoshi Endo, Takuya Suzuki *The University of Tokyo*

In diblock copolymers (BCP), a variety of microphase separated morphologies in a scale of tens of nanometer have been observed depending on the volume fraction of blocks, degree of polymerization and interaction parameter between blocks. Similar morphologies have been found in different class of softmatters: for example, surfactant/solvent and BCP/solvent systems form similar morphologies, which resulted from its amphiphilicity and solvent selectivity. By using additional degree of freedom by using a solvent, the morphologies becomes a function of concentration, which can be easily changed. We have succeeded in inducing order-toorder phase transitions (OOT) by swelling selectively CO₂-philic blocks of BCP by changing the pressure of supercritical CO₂, which controls apparent volume fraction of CO₂-philic blocks.[1–4] The CO₂ pressure induced morphology changes were anticipated by ex-situ analysis of the samples that was frozen and removed from supercritical CO₂. However, the OOT mechanism by selective swelling hasn't clearly understood. Thus this time we performed in-situ measurement of swollen BCP in CO₂ by neutron scattering analysis. We analyzed the morphologies of Poly(styreneb-perfluorooctylethyl methacrylate)s (PS-PFMAs), using small angle neutron scattering, SANS-U at JRR-3, Tokai, Japan. PFMA is CO₂-philic and is expected to be highly swollen in CO₂. We prepared six block copolymers differing in the ratio of PS to PFMA and total degree of polymerization, of which molecular weights are in the range from 10,000 to 25,000 and of which morphologies are Sphere, Cylinder and Lamellar. Then the samples were placed into a high-pressure cell with pressure and temperature controls. We observed multiple OOT as a function of CO₂ pressure on the pressure dependence of SANS scattering patterns. Depending on the initial morphology, which is the one at atmospheric pressure, multiple phase transitions starting from the hexagonal packed PFMA cylinders to the inversed body centered cubic lattice of PS were observed; however, the sample with spherical PFMA domains as the initial morphology maintains its spherical morphology irrespective of pressure while the lattice constant increases with pressure.

[1] H. Yokoyama, L. Li, C. Dutriez, Y. Iwakura, K. Sugiyama, H. Masunaga, S. Sasaki, H. Okuda, Macromolecules 41, 8626?8631, (2008). [2] H. Yokoyama, C. Dutriez, L. Li, T. Nemoto, K. Sugiyama, S. Sasaki, H. Masunaga, M. Takata, and H. Okuda J. Chem. Phys., Vol. 127, 014904-1 - 014904-9 (2007). [3] L. Li, H. Yokoyama, Angew. Chem. Int. Ed. 45, 6338-6341 (2006). [4] H. Yokoyama, L. Li, K. Sugiyama, T. Nemoto, Adv. Mater., 16, 1542-1546 (2004).

Exclusive volume effect on uni-lamellar vesicles by addition of polymers

Norifumi L. Yamada High Energy Accelerator Research Organization

It has been reported that the mixture of long-chain phospholipids (14 carbons/chain or more) and short-chain phospholipids (6-8 carbons/chain) spontaneously forms uni-lamellar vesicles Since a membrane consisting (ULVs). of phospholipid molecules is the main component of biomembranes, such SUVs have a potential to create biomimetic system for studying bioactivities in cells. Last year, the effect of polyethyleneglycol (PEG) on the stability of ULVs consisting of dimyristoylphosphatidylcholine (DMPC; 14 carbons/chain) and dihexanoylphosphatidylcholine (DHPC; 6 carbons/chain) mixture has been investigated by small angle neutron scattering (SANS). This result clearly shows that reconstruction of ULVs was induced by PEG. However, the origin of the reconstruction has not been understood yet.

In this study, we performed the SANS experiment to clarify the effect of PEG on ULV reconsruction. The SANS experiments were performed using SANS-U at the C1-2 port of JRR-3 at Japan Atomic Energy Agency (JAEA), Tokai. The lipid mixture of [DHPC]:[DMPC]=1:3.2 was dissolved in a D2O solution of 3 mM CaCl2. The lipid concentration of the solution was controlled to be 0.9 vol%. The obtained solution was heated to 323 and 303 K to make ULVs with different size, and mixed with the twice amount of PEG solution to be 0, 20, 40, and 60 mg/mL.

Figure (a) shows the SANS profiles before the addition of PEG solution, in which the period of fringes reflects the size of ULVs. After mixing with PEG solution, ULVs are reconstructed to be lamellae or multi-lamellar vesicles (MLVs). Figure (b) and (c) shows the phase diagram after the addition of PEG at 323 and 303 K respectively. These phase diagram clearly show that large molecular weight PEG has a strong effect on the reconstruction of ULVs, and the effect is enhanced at 303 K. It should be noted here that no structural change was observed when ULV/PEG mixture at 323 K was cooled down to 303K. This indicates that the size of ULVs plays an important role on the ULV reconstruction.

From these results, we conclude that exclusive volume effect of PEG is the origin of the ULV reconstruction because large PEGs and ULVs have large exclusive volume.

Fig. 1. (a) SANS profiles before the addition of PEG solution. (b) phase diagram after the addition of PEG at 323 K. (c) phase diagram after the addition of PEG at 303 K.

States of Poly(methyl methacrylate) Monolayers Supported on Substrates in Non-solvents

Hironori Atarashi(1), Ko-ichiro Hori(1), Naoki Kai(2), Ayanobu Horinouchi(1), Yoshihisa Fujii(1), Masahiro Hino(3), and Keiji Tanaka(1,2)

1. Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan 2. Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan

3. Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan

Polymeric materials have been widely used for medical diagnosis and treatment in such applications as DNA arrays, tips for micro-total-analysis and scaffolds for artificial organs. When they are used in a human body, the surface is contact with liquid. In such cases, the interfacial structure and properties strongly affect the stability of the materials. We have hitherto studied aggregation structure of poly(methyl methacrylate) (PMMA) at the interfaces with liquids such as water, hexane and methanol by neutron reflectivity (NR) measurement.[1] As a result, the liquid/polymer interfaces were diffuse in comparison with the air/polymer interface, probably due to interfacial roughening and the partial dissolution of segments at the outermost region of the film. In this study, we focused on an ultrathin PMMA film with a larger surface to volume ratio so that the swollen structure at the outermost region of the film could be easily discussed. Deuterated PMMA (dPMMA) with number-average molecular weight of 296 k was used. A film of dPMMA was spin-coated onto a quartz block from a toluene solution. The film thickness was about 12 nm. The film was annealed for 24 h at 423 K under vacuum.

Figure 1 (a) shows NR curves for the dP-MMA film under air and methanol. For clarity, the data set under methanol is offset by a decade. The open symbols show experimental data and solid lines are bestfitting curves calculated on the basis of the model scattering length density (b/V) profiles shown in the panel (b). The dPMMA film was swollen under methanol by a factor of 1.65. Interestingly, it was higher than that for the 70 nm-thick film, 1.39. [1] Also, the overall content of methanol for the 12 nm-thick dPMMA film was larger than that for the 70 nm-thick film.

[1] K. Tanaka, Y. Fujii, H. Atarashi, K. Akabori, M. Hino, and T. Nagamura, Langmuir, 24, 296 (2008).

Fig. 1. Figure 1 (a) Neutron reflectivity for a dP-MMA film under air and methanol. The scattering length density profiles are shown in (b). For clarity, the data under methanol is off-set by decade.

Aggregation States and Dynamics of Poly(methyl methacrylate) at Interfaces with Non-solvents

Hironori Atarashi(1), Hitoshi Endo(2), Mitsuhiro Shibayama(2), and Keiji Tanaka(1) 1. Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan 2. Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581, Japan

Polymeric materials have been widely used for medical diagnosis and treatment in such applications as DNA arrays, tips for micro-total-analysis and scaffolds for artificial organs. When they are used in a human body, the surface is contact with liquid. In such cases, the interfacial structure and properties strongly affect the stability of the materials. We have hitherto studied aggregation structure of poly(methyl methacrylate) (PMMA) at the interfaces with liquids such as water, hexane and methanol by neutron reflectivity (NR) measurement.[1] As a result, the liquid/polymer interfaces were diffuse in comparison with the air/polymer interface, probably due to interfacial roughening and the partial dissolution of segments at the outermost region of the film. This means that mobility of chains in the interfacial region is enhanced in comparison with that in the internal region, and motivates us to examine interfacial mobility. PMMA with number-average molecular weight of 300 k was used as a sample. Here, PMMA particles were used to increase the ratio of interface to volume rather than using a film. Deuterated water (D2O) and methanol (CD3OD) were used as liquids. PMMA particles were filled into a quartz cell with 2 mm optical length. Normalized intermediate scattering function (I(q,t)/I(q,0)) for PMMA being contacted with D2O and CD3OD at 293 K were evaluated by neutron spin echo (NSE) measurement.

Panels (a) and (b) of Figure 1 show (I(q,t)/I(q,0)) for PMMA in D2O and CD3OD at q = 0.6 nm-1, respectively. The open symbols show experimental data and solid lines are drawn as a guide for eyes. The I(q,t)/I(q,0) value decreased with in-

creasing time for the both cases. However, the relaxation behavior was not the same for each other. Although it is too early to conclude that the relaxation reflects mobility of segments at the liquid/polymer interface, the idea could well explain the result. We will report more conclusive work in the near future.

[1] K. Tanaka, Y. Fujii, H. Atarashi, K. Akabori, M. Hino, and T. Nagamura, Langmuir, 24, 296 (2008).

Fig. 1. Normalized intermediate scattering functions for PMMA (a) in D2O and (b) in CD3OD at 294 K. The Open symbols show experimental data and solid lines are drawn as a guide for eyes.

Nano-sized clusters in the mixture of D2O/H2O in the presence of 3-methylpyridine

Hideki Seto and Koichiro Sadakane High Energy Research Organization

Mixtures of D₂O and 3-methylpyridine (3MP) exhibit a closed-loop type on the T- ϕ (ϕ is a volume fraction of 3MP) phase diagram and that H₂O and 3MP mixtures do not phase separate at any temperature. It is also known that the deuteration of water and pressure have opposite effects on the phase equilibrium behavior (Z.P. Visak, et al., *J. Phys. Chem. B*, **107**, 9837 (2003)). These results suggest that the solvation affinities of 3MP with D₂O and H₂O are different. However, no definite explanation for this problem exists so far.

Recently, we have performed the preliminary experiment for the mixtures of 3MP and D₂O/H₂O are measured by SANS at CG-2, HFIR, Oak Ridge National Laboratory. Then, deuterated 3MP (3MP-d7) was mixed with 95.9 vol% of D2O and 4.1 of H2O in order to set the mean neutron scattering length density of water being the same as that of d-3MP. When the distributions of D₂O and H₂O are homogeneous, no SANS scattering should be observed even if the distribution of d-3MP is heterogeneous. However, the observed SANS profile indicate the strong scattering centered at q=0. The profile could be explained by a scattering function from spherical particles with Schultz size distribution. The radius of spherica clusters are about 400 Å. This result indicates that the demixing of H₂O and D₂O is induced by the effect of d-3MP.

In order to confirm this result, we again performed the SANS measurement at SANS-U. Wavelength of indicent neutron was 4.8 Å, the beam size was 5mm and the distance between the sample position and the 2D detector was 2m/12m. The sample was contained in a quartz cell of 4mm-t. Unfortunately, no clear profiles were observed in this case since the scatter-

ing intensity was too weak. Therefore, further measurements should be done by using higher flux neutron beam.

Neutron Spin Echo experiments are performed at iNSE in the mixture of water, 3MP and NaBPh₄. The intermediated correlation function can be interpreted with the model proposed by Zilman and Granek. This evidence verifies the formation of the membrane-like structure by adding NaBPh₄.

Fig. 1. SANS profile of water(D2O+H2O)/3-methylpyridine.

Pressure induced disorder/lamellar phase transition in the mixture of water/organic solvent/salt

Hideki Seto and Koichiro Sadakane High Energy Research Organization

Binary mixtures of water and an organic solvent have been intensively investigated to clarify the universal features of critical phenomena and phase separation dynamics. The effect of salt in the binary mixtures have been widely studied in terms of the phase behavior, in which changes of the critical temperature and/or the closed-loop type miscibilty gap were The binary mixture of D_2O observed. and 3-methylpyridine (3MP) is one of wellknown systems to show critical phenomena with various types of salt effect. This binary mixture is completely miscible at room temperature and becomes immiscible with increasing temperature, and finally separates into two phases above the critical temperature associated with critical phenomena. The critical point of the mixture, D₂O and 3MP, lies at $\phi_{3MP} = 0.3$ and T = 310.3 K, where ϕ_{3MP} and T are the volume fraction of 3MP and temperature, respectively. The small-angle X-ray scattering (SAXS) result by Jacob et al. was interpreted as the nano-sized micro-clusters exist in one-phase region (J.Jacob, et al., Chem Phys Lett., 304, 180 (1999)). The investigations of the critical phenomenon by means of dynamic light scattering (DLS) showed the crossover behavior from 3dimensional Ising to mean-field universality, and were concluded that an additional length scale exists competing with the correlation length of the concentration fluctuations.

Recently, we have confirmed that the self-assembling structures at an off-critical concentration of the binary mixture with an antagonistic salt, which is composed of hydrophilic and hydrophobic ion pair (K. Sadakane, et al., *Phys. Rev. Lett.*, **103** 167803, (2009)). The system was the mixture of D₂O, 3MP and sodium

tetraphenylborate (NaBPh₄). Optical microscope images of the system showed the characteristic feature of multi-lamellar vesicles, whose size was about 10 μ m. Inside the multi-lamellar vesicles, a periodic structure having a mean repeat distance of about 100 Å was discovered by means of SANS. The result clearly indicated a microphase separation between water and 3MP domains, which is induced by the presence of the salt. These phenomena are comparable with the self-assembly in ternary mixtures of water, oil and surfactant, i.e., microemulsion.

In the system of microemulsion, pressure induced disorder/lamellar phase transition is known (Y. Kawabata, et al., Phys. Rev. Lett., 92 056103 (2004)), and it is expected that similar phenomena is observed in the mixture of $D_2O/3MP/NaBPh_4$. Threfore, we perforemed SANS measurements by using pressure cell at SANS-U. D₂O and 3MP was mixed at ϕ_{3MP} = 0.09, where ϕ_{3MP} is the volume fraction of 3MP against the whole mixture of D₂O and 3MP, and 85 mM of NaBPh₄ were dissolved. Temperature was fixed at 321 K. As a result, disorder/lamellar phase transition was observed; disordered-structure changes to lamellar-structure above 100 MPa. We consider that the phenomenon should be explained in terms of the change of intermembrane interactions. Also, the interaction between water and organic solvent (in this case, 3MP) should play the important role for the phase transition.

Based on this idea, we examined the pressure dependence of concentration fluctuation in the mixture of $D_2O/acetonitrile(AN)$. In this system, the phase separation temperature is not affected by the deuteration (so, contrast variation experiments will be done in the mixture of water/AN/salt in the future). D₂O and AN was mixed at critical concentration: the volume fraction of AN, ϕ_{AN} , is 0.69. Temperature was fixed at 298 K. As a result, concentration fluctuation increased with increasing pressure above 150 MPa. The similar tendency was also observed in the mixture of D₂O/3MP. Therefore, it is considered that the solubility of organic solvent for the water decreases with increasing pressure. Anyway, further experiments should be performed for the mixture of water and organic solvent.

LCST Phase Behavior of Poly(benzyl methacrylate) in Room-temperature lonic Liquid studied by SANS

Shibayama M.(A), Fujii K.(A), Matsunaga T.(A), Ueki T.(B), Watanabe M.(B) (A) Institute for Solid State Physics, The University of Tokyo. (B) Yokohama National University

It is well known that a lower critical solution temperature (LCST)-type phase behavior in a polymer solution can be often observed in aqueous medium. We have recently reported that poly(benzyl methacrylate), PBnMA shows an LCST type phase behavior in a hydrophobic room-temperature ionic liquid (IL) such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide,

[C2mIm][TFSA].[1,2] In this study, smallangle neutron scattering (SANS) were made on the PBnMA in [C2mIm][TFSA] solution and the LCST phase behavior was characterized from the structural viewpoint.

SANS measurements were carried out using SANS-U spectrometer with the camera length 2 and 8 m. SANS profiles corrected for background using an empty cell were normalized with respect to the scattering of polyethylene as a secondary standard material. The SANS profiles thus obtained were further corrected for the incoherent scattering to obtain the scattering intensity, I(q).[3]

Figure 1 shows SANS profiles, I(q)s observed for fully deuterated IL ([C2mim]d11[TFSA]) containing 3 wt% PBnMA polymers in the temperature range of 298 - 373 K. As seen, the I(Q)s were kept practically unchanged in the temperature range between 298 and 363 K, while they suddenly changed at 363 K. This indicates that the LCST behavior of PBnMA-IL solution is a first order phase transition, which is consistent with dynamic light scattering (DLS) results. The SANS profiles below 363 K were well represented by theoretical Debye scattering function (solid line), and then the radius of gyration, Rg was estimated to be almost constant, i.e., 40 -

45 . With regard to T > 363 K, we tried to reproduce the observed I(q)s by using a sum of Debye and squared-Lorentz functions. The SANS result obtained here was compared with those in aqueous Poly(N-isopropylacrylamide), PNIPAm solutions as a typical LCST system. It was found that the specific solvation of PBnMA by solvent IL plays an essential role on the phase behavior.

[1] Ueki T., Karino T., Kobayashi Y., Shibayama M., Watanabe M., J. Phys. Chem. B 2007, 111, 4750.

[2] Ueki T., Watanabe M., Macromolecules 2008, 41, 3739.

[3] Shibayama M., Matsunaga T., and Nagao M. J. App. Cryst. 2009, 42, 621.

Fig. 1. SANS profiles observed in the PBnMA-[C2mim][TFSA] solution at various temperatures.

Dynamic and Static Structure Analyses of Super-homogeneous Tetra-PEG gel

Sakai T.¹, Matsunaga T.², Shibayama M.², and Chung U.¹

¹ Dep. of Bioeng., The University of Tokyo, ² ISSP, The University of Tokyo, 106-1 Shirakata,

Tokai, 319-1106

A series of model networks consisting of polyethylene glycol (PEG), Tetra-PEG gels, have been prepared and their structure and dynamics have been investigated by small-angle neutron scattering (SANS), Static light scattering (SLS) and Neutron Spin Echo (NSE). The Tetra-PEG gels were prepared by cross-end coupling of two types of tetra-arm PEG macromers with the molecular weights, $M_{\rm w}$, of 5 to 40×10^3 g/mol. In SANS regime, the structure factors of both as-prepared and swollen gels can be represented by Ornstein-Zernike type scattering functions and be superimposed to single master curves with the reduced variables, ξq and $I(q)/\phi_0\xi^2$, irrespective of the molecular weight of tetra-PEG, where q, ξ , I(q), and ϕ_0 are the magnitude of the scattering vector, the correlation length, the scattering intensity, and the polymer volume fraction at preparation, respectively. In SLS regime, however, a power-law type upturn was observed, indicating the presence of PEG chain clusters. Interestingly, these inhomogeneities disappear by swelling.// The following facts are disclosed: (1) The TAPEG macromer solutions, consisting of tetraarm polymer chains, are not interpenetrable due to the presence of end groups, and the individual chains behave as hard spheres. Hence, the radius of gyration, $R_{\rm g}$ scales with $\phi_0^{-1/3}$. (2) The structure factors of both as-prepared and swollen gels in SANS regime can be represented by Ornstein-Zernike type scattering functions and be superimposed to single master curves, irrespective of the molecular weight. (3) However, in SLS regime, a steep upturn was observed in SANS curves in as-prepared Tetra-PEG gels, indicating the presence of PEG chain clusters or defects. A master-curve relationship holds also in SLS regime for a gel having the same molecular weight, indicating a self-similar network structure in Tetra-PEG gels. (4) The upturn in scattering intensity is assigned to be a clustered structure as is often observed in PEG in water and/or network defects. The upturn is suppressed by increasing M_w due to a formation of more regular network structures with less inhomogeneities. It is concluded that Tetra-PEG gels have no noticeable entanglements, but have self-similar structures with respect to M_w , and form ideal tetrafunctional polymer networks, provided that M_w is high enough ($\approx 40 \times 10^3$).

Fig. 1. (a) SANS as well as SLS intensity functions for Tetra-PEG gel-5k prepared at various concentrations, ϕ_0 s. The missing *q* region is indicated by the vertical dashed line. (b) Scaled plots, $I(q)/\phi_0\xi^2$ and ξq .

Chain conformation of highly-purified ring polymer in bulk and the blending effect of linaer polymers

Atsushi takano, Yutaka Ohta and Yushu Matsushita Nagoya University

A ring polymer has characteristic structure with no chain ends and it is considered as a model polymer to clarify the topological effect on physical properties such as chain conformations, viscoelastic properties and so on. Recently the molecular weight (Mw) dependence of radius of gyration (Rg) for ring polymers in bulk is of much interest by scientists theoretically and experimentally. The Rg of polymer molecule can be scaled with the Mw in the general form as Rg ? Mwv

The v value for linear polymers in bulk is 1/2, where the polymer chains can be regarded as an ideal chain. On the other hand, it is considered that the conformations for ring polymers in bulk do not obey the ideal chain statistics because the chain ends are connected. Arrighi et al. reported that the v value for ring polymers in melt is also 0.42 by SANS experiment, though the molecular weights of the ring polymers are fairly low as M<10k, and moreover the amount of linear contamination was not clarified [1]. In this study we have synthesized a series of highlypurified ring polystyrenes with molecular weights ranging 16k<Mw<380k, the radii of gyration were measured in bulk by small-angle neutron scattering (SANS) and molecular weight dependence of Rgs of the ring polymers were investigated.

Synthesis of ring polystyrenes was carried out by the same procedures reported previously [2]. Purified ring polymers were obtained firstly by SEC fractionation and secondly by fractionation using liquid chromatography at the critical condition (LCCC). Four pair of hydrogenated/deutrated highly-purified rings with molecular weights of 16k, 40k, 110k and 380k were prepared. The purities of rings were checked by LCCC and it was confirmed that all ring samples have high purity over 95%. SANS measurements of bulk film samples were performed by using SANS-U spectrometer (ramda=0.70nm) at ISSP, Tokai.

Relationship between Rg and Mw forring polymers are plotted in Figure 1. It was found that Rg of ring polymer can be scaled with Mw as Rg \propto Mw0.38 in bulk, which were relatively weaker molecular weight dependence than linear ones. This scaling exponent is slightly smaller than the experimental result by Arrighi et al, and located between the predicted value by Cates and Deutsch (v =2/5) [3] and the other one by Suzuki et al. (v =1/3) [4].

References

[1] V. Arrighi et al., Macromolecules 37, 8057-8065 (2004)

[2] D.Cho et al., Polym. J. 37, 506?511 (2005)
[3] E. Cates and J. M. Deutsch, J. Phys. 47, 2121 (1986)

[4] J.Suzuki et al. J. Chem. Phys. 129, 034903 (2008)

Fig. 1. Figure 1. Relationships between Rg and Mw of ring polystyrenes in bulk.

1. 中性子散乱 6)生 物

1. Neutron Scattering 6) Biology

This is a blank page.

1-6-1

Neutron Diffraction Study of Porcine Pancreatic Elastase under Active Conditions

T. Tamada, T. Kinoshita¹, T. Ohhara, K. Kurihara, T. Tada¹ and R. Kuroki

Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195 ¹Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531

Porcine pancreatic elastase (PPE) is a serine protease classified in the chymotrypsin family that is possibly the most destructive enzymes having the ability to degrade virtually all of the connective components in the body. Uncontrolled proteolytic degradation by pancreatic elastase (EC 3.4.21.36) causes the fatal disease pancreatitis. We have already determined the complex structure between PPE and its peptidic inhibitor at JRR-3 in JAEA by neutron crystallography. $^{(1),2)}$ This neutron structure elucidated the tetrahedral intermediate state of catalysis by serine protease. For further clarification of catalytic mechanism of serine protease, we carried out the neutron diffraction analysis of PPE only at active conditions (pD8.0).Last fiscal year, we collected the 2.3 Å neutron data using a crystal with a size of 1.3 mm^3 . Here we report the collection of higher resolution data using a larger crystal of PPE.

A macro-seeding procedure was repeatedly performed during three months by adding mix solution of protein and precipitant in deuterated buffer (pD8.0) to a seed crystal prepared under acidic condition (pH5.0). Finally, a seed crystal was grown to the size of 3.3 mm^3 . Diffraction data were collected at room temperature using monochromatic neutron beam ($\lambda = 2.9$ Å) and recorded on a neutron imaging plate on BIX-3 diffractometer at JRR-3 in JAEA. The total rotation range of 86.4° was covered by 288 oscillation images with exposure time of 4 h./image by step scanning method with an interval angle of 0.3° . Data were processed with the programs DENZO and SCALEPACK. Full data set was integrated and scaled to 1.9 Å resolution. The number of observed reflections was 31,974 which were merged into 16,094 unique reflections with an Rmerge of 0.093 and a completeness of 87.1 %. Crystallographic refinement of the 1.9 Åneutron structure was perfomed by the program PHENIX in a joint refinement with 1.3 ÅX-ray diffraction data collected at room temperature from the same crystal. The final model, including a total of 4,241 atoms (H and D atoms: 2,195, non-H and D atoms: 2,046) was refined to a crystallographic *R*-factor of 17.2 % (free *R*-factor = 22.3 %) to 1.9 Å resolution. Hydrogen positions at active site was clearly confirmed on nuclear densities (Figure 1).

Figure 1: Nuclear densities at active sites. The FoFc omit map were caculated without H/D atoms. Deep: $+3\sigma$, Light: -2.5σ .

References

- T. Kinoshita, T. Tamada, K. Imai, K. Kurihara, T. Ohhata, T. Tada, R. Kuroki : "Acta Crystalgr.", <u>F64</u>, 217 (2008).
- 2) T. Tamada, T. Kinoshita, K. Kurihara, M. Adachi, T. Ohhata, K. Imai, R. Kuroki, T. Tada : "J. Am. Chem. Soc.", <u>131</u>, 11033 (2009).

1-6-2

Dynamic of Water Molecule in a Crowding Environment Studied by Neutron Quasi-Elastic Scattering

H. Nakagawa

Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

The cytoplasm of a living cell is crowded with small molecules and macromolecules [1]. The molecular crowding affects proteinprotein interactions and diffusion, which are relevant to the biologically important phenomena in the cells. The dynamics of water molecule is affected by a confined environment. Thus, hydration water dynamics in biological cells should be affected by molecular crowding. The hydration water should be closely related to protein-protein association. Here, I studied the water dynamics in the crowding condition by inelastic neutron scattering experiment. I examined effects of molecular crowding on water molecule by using glycerol, which is concentrated solution of a model " crowding agent ". I studied the diffusive character of water by quasi-elastic neutron scattering with various concentrations of glycerol solution. The scattering from water in glycerol solution was estimated by the subtraction of the scattering profile of D2O solution with deutrated glycerol from the H2O solution with deutrated glycerol. The quasielastic scattering experiments were performed with the triple axis spectrometer, LTAS, in the JRR-3M reactor in Tokai with an energy resolution of about 90 μ eV. The width of quasi-elastic scattering () was estimated fitted with single Lorentzian model function convoluted with the resolution function of spectrometer, which was obtained from vanadium measurements. Figure shows the at various mass fractions of water. gradually increases as a function of a mass fraction of water. This suggests that the dynamics of water molecule at higher glycerol concentration would be restricted by the more crowded environment. The protein function needs mobility of hydration water around protein surface. Some organisms can survive at drought environment by a strategy of anhydrobiosis,

in which an organism loses virtually all of its free intracellular water and ceases metabolism but remains capable of revival after rehydration [2]. This study indicates that neutron scattering experiment is useful for studying water dynamics in the cell with crowding condition. Therefore, the dynamics of cell water should be examined in more detail not only in vitro but also in vivo.

Figure 1: The width of quasi-elastic scattering as a function of mass fraction of water.

References

- 1) R.J. Ellis et al. : "Nature", <u>425</u>, 27(2003).
- 2) M. Sakurai et al. :"PNAS", 105, 5093(2008).
1-6-3

Determination of Lipid Transfer Activity of Phospholipid Transfer Proteins by Time-Resolved SANS

M. Nakano(A), M. Fukuda(A), Y. Wada(A), M. Kaihara(A), H. Endo(B) (A)Graduate School of Pharmaceutical Sciences, Kyoto Univ., (B)ISSP-NSL, Univ. of Tokyo

Biological membrane traffic is important for cell growth, development and survival [1]. Quantitative comprehension of membrane lipid dynamics is therefore a key challenge in biophysics and cell biology. Phosphatidylcholine/phosphatidylinositol transfer proteins (PITPs) play crucial roles in intracellular vesicular transport and in regulation of phospholipid synthesis. PITPs have shown to transport phosphatidylcholine and phosphatidylinositol between vesicles in vitro. However, the relevance of the lipid transfer activity to its cellular functions remains unclear.

We have established the method determining the rates of interbilayer exchange and flip-flop of phospholipids in large unilamellar vesicles (LUVs) by timeresolved small-angle neutron scattering (TR-SANS) technique [2]. This method has demonstrated that 1-palmitoyl-2oleoylphosphatidylcholine (POPC) represents very slow dynamics: The half time of the intervesicular transfer of POPC is ca. 90 h and that this lipid do not flip-flop spontaneously [3]. In this study, lipid transfer was monitored by TR-SANS in the presence of PITP to determine the lipid transfer activity of the protein.

LUVs (diameter of ca. 100 nm) consisting of deuterated (D-LUV) or hydrogenated POPC (H-LUV) were prepared by extrusion method. Sec14, a PITP from Saccharomyces cerevisiae was provided from Prof. V. Bankaitis (Univ. North Carolina at Chapel Hill). TR-SANS measurement was started immediately after mixing equivalent volume of D- and H-LUVs (35 mM POPC) in Tris buffered saline with 30% D2O in the presence and absence of Sec14. Time-course of the normalized contrast was calculated from the scattering intensity.

Contrast decay profiles for POPC LUVs are shown in Fig. 1. The decay became faster as the concentration of Sec14 increased, suggesting that Sec14 transports POPC between particles. The decay profiles could be fitted by double-exponential function but not by single-exponential function. This implies that the membrane affinity of the protein is different between lipid-bound and lipid-free states.

References

[1] J. C. M. Holthuis and T. P. Levine, Nat. Rev. Mol. Cell Biol. 6 (2005) 209.

[2] M. Nakano, M. Fukuda, T. Kudo, H. Endo, T. Handa, Phys. Rev. Lett. 98 (2007) 238101.

[3] M. Nakano, M. Fukuda, T. Kudo, N. Matsuzaki, T. Azuma, K. Sekine, H. Endo, T. Handa, J. Phys. Chem. B 113 (2009) 6745.

Fig. 1. Contrast decays of POPC LUVs after mixing D- and H-LUV at 37° C in the absence and presence of Sec14 with different concentrations. Solid curves are fitting curves of double-exponential function.

Activity Report on Neutron Scattering Research: Experimental Reports **17** (2010) Report Number: 1033

1-6-4

Structual Investigation on Proteasome α 7 ring in solution

Masaaki Sugiyama, Eiji Kurimot*, Toshiharu Fukunaga, Koichi Kato* Research Reactor Institute Kyoto University, Nagoya City University*

The 20S proteasome is known as a degrading factory for an unnecessary protein and then plays a very important role in protein-metabolic and immune systems. This huge complex protein has a hollow cylindrical shape consisting of four rings, α , β , β , α -rings. Both α and β rings are heptamers with $\alpha 1$ - $\alpha 7$ subunits and $\beta 1$ - $\beta 7$ ones, respectively. It has been reported that α 7 subunits in the solution also make a (homo) heptamer ring similar to a true (hetero) α ring and then two rings make one dimer[1], which we call "double ring". But the detailed structure of this double ring is not clarified. Therefore, we perfored SANS experiment of proteasome α 7 ring solution in order to solve the packing structure in detail.

The SANS experiment was carried out with SANS-U spectrometer of ISSP of University of Tokyo installed at JRR-3 of JAEA. The sample was proteasome α 7 solution with the concentration of 5mg/ml. The observed SANS intensity was corrected for background, cell, buffer scattering, and transmission factor.

Fihure 1(a) shows structural parameters of packing structure of double ring: *L* is a radius of a ring and *D* is a distance between two rings. Figure 1(b) shows the observed SANS profile and some simulated SANS curves of which *L* is 42 Å and *D* is varied from 35 to 45 Å. As you can see from Fig. 2, the best compromised values are *D* of 35 Å in *L* of 42 Å: With the other value of *L*, the SANS curves show the larger divation in all *D* values. With this structure model, analysis of a subunit exchange kinetics are now in progress.

Reference

81) M.Sugiyama, K.Hamada, K.Kato, E.Kurimoto, K.Okamoto, Y.Morimoto, S.Ikeda, S.Naito, M.Furusaka, K.Itoh, K.Mori, and T.Fukunaga, Nucl. Inst. Method A, **600** (2009) 272-274.

Fig. 1. Figure 1. (a)Structure parameters of a double ring.(b) Experimental and simulated SANS profiles of proteasome α ring.

1. 中性子散乱 7) 基礎物理学·中性子光学

1. Neutron Scattering 7) Fundamental Physics • Neutron Optics This is a blank page.

Development of Jamin-Type Cold Neutron Interferometer with Complete Path Separation

Y. Seki(A), M, Kitaguchi(B), M. Hino(B), H. Funahashi(C), Y. Otake(D), K. Taketani(E), H. M. Shimizu(E) (A)Kyoto Univ., (B)KURRI, (C)Osaka Electro-Communication Univ., (D)RIKEN, (E)KEK

We have succeeded in developing a new large-dimensional multilayer interferometer for cold neutrons, in which the two paths are completely separate for the first time.

Our Jamin-type interferometer (Fig. 1 (Top)) consists of two "beam splitting etalons" (BSEs) [1], which contains two multilayer mirrors parallel to each other with a set of spacers. The BSEs enable us to align the four independent mirrors with required accuracy. The thickness of the spacers of previous BSEs were, however, only 9.75 μ m, a distance much narrower than the incident beam width, so that the two paths of the interferometer almost overlapped. This disadvantage limited range of the application of multilayer interferometer.

To solve this problem, we have fabricated new BSEs with 189 µm spacers. A demonstration of the interferometer with these BSEs was performed at the monochromatic cold neutron beamline MINE2 on the JRR-3 reactor in JAEA. The mean wavelength of the beam was 0.88 nm with a bandwidth of 2.7% in FWHM. As shown in Fig. 1 (Middle), the beam profile confirms that the two paths of the interferometer are completely separate. We have also observed clear interference fringes with a contrast of 67 \pm 4% at maximum (Fig. 1 (Bottom)). The interferograms were obtained by scanning the phase of the oscillating magnetic field in π flipper.

With complete path separation, we can perform various experiment in some configurations: the insertion of phase objects into the one-side path, the enclosure of devices between the two paths, and phase differences depending on the area enclosed by the two paths. One of such experiments is the precision measurement of the Aharonov-Casher (AC) effect, in which electrodes to induce the phase difference are inserted between the two path. Our interferometer with long paths is more sensitive to the AC phase than silicon neutron interferometers. We are also trying to apply BSEs to white neutron beam with supermirrors fot high intensity measurements of the AC effect at J-PARC.

References [1] M. Kitaguchi *et al.*: Phys. Rev. A **67** (2003) 033609.

Fig. 1. (Top) Jamin-type interferometer with two BSEs, (Middle) Beam profile of the two separated paths between the two BSEs, (Bottom) Intererence fringes with a contrast of 67%.

Activity Report on Neutron Scattering Research: Experimental Reports 17 (2010) Report Number: 1095

1-7-2

Development of cold neutron interferometer for pulsed source

M. Kitaguchi(A), M. Hino(A), H. Funahashi(B), Y. Seki(C), K. Taketani(D), and H.M.Shimizu(D) (A)KURRI, (B)Kyoto Univ., (C)RIKEN, (D)KEK

Neutron interferometry is a powerful technique for studying fundamental physics. A large dimensional interferometer for long wavelength neutrons has the advantage to increase the sensitivity to small interactions. Such a kind of interferometer was realized by using multilayer mirrors. Multilayer mirror is suitable for Bragg reflection of cold neutrons. We demonstrated Jamintype interferometer for cold neutrons using beam splitting etalons (BSEs), which enables us to align the four independent mirrors within required precision [1]. The BSE contains two parallel mirrors. A couple of the BSEs in the Jamin-type interferometer separates and recombines the two paths spatially. A neutron supermirror is one of the multilayer with continuous lattice constants, which reflects the wide range of the wavelength of neutrons. The BSEs with neutron supermirrors enable us to arrange Jamin-type geometry of the interferometer for white neutrons. The interferometer can be applied to pulsed neutrons by using the BSEs with supermirrors. Such interferometer increase the neutron counts for high precision measurements, for example, Aharonov-Casher effect. Wevelength dependence of the interaction in the interferometer also can be measured by the time of flight detection for pulsed neutrons.

We have already performed test experiments using polychromatic mirrors with two different lattice constants. We fabricated two polychromatic mirrors with intermediate gap layer on the top of Si substrate continuously. This device enabled us to provide two separated paths of the Jamin-type interferometer for two wavelength of neutrons. We observed clear interference fringes at the two different incident angles, which were corresponding to the two multilayers in the polychromatic mirror, at cold neutron beam line MINE2 at the JRR-3 reactor in JAEA.

Polarization interferometer was used for the performed experiments. One of the two mirrors on the BSE is a polarizing mirror and each path corresponds to a spin component. We have installed the polarization devices into cold neutron beam line BL05 low divergence branch in MLF at J-PARC. We have observed TOF interference fringes for pulsed neutrons by using the devices which synchronized with neutron production, without BSEs. The experiments using BSEs with supermirrors are started now. We are also planning the experiments using the interferometer as one of fundamental physics investigations at J-PARC.

[1] M. Kitaguchi, et. al., Phys. Rev A 67 (2003) 033609.

Fig. 1. TOF interference fringes at BL05 in MLF at J-PARC $% \mathcal{A}$

1. 中性子散乱 8)装 置

1. Neutron Scattering 8) Instrument

This is a blank page.

1-8-1

Influence of Interfacial Roughness Correlation on Reflectivity of Neutron Multilayer Mirrors

R. Maruyama, D. Yamazaki, T. Ebisawa, and K. Soyama

J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195

Multilayer structures consisting of alternating Ni and Ti layers are widely used for neutron optical elements such as supermirrors. Deposition techniques such as adding various materials to the Ni and Ti layers using magnetron and ion-beam sputtering have been employed and demonstrated to be effective in the realization of higher reflectivity, larger critical angle, and lower diffuse intensity.

We have tested the technique of adding carbon atoms to the nickel layer and demonstrated that the reflectivities at critical angles for NiC/Ti supermirrors with m = 3, 4,and 6 are improved up to 0.90, 0.80, and 0.40, respectively¹⁾. The diffuse intensity form a NiC/Ti supermirror was found out to be lower than that from a Ni/Ti supermirror by more than one order of magnitude. In order to obtain insight into the mechanism that controls the diffuse intensity from a supermirror, we have investigated the crystal and interface structure of Ni/Ti and NiC/Ti multilayers and demonstrated that a multilayer with a large vertical correlation length and a small lateral correlation length effectively suppresses the diffuse intensity from a supermirror. This result implies that the lateral and vertical correlations and the degree of jaggedness as well as the interface roughness need to be taken into account in the reflectivity analysis of a neutron multilayer $mirror^{2}$). Figure 1 shows the reflectivity profiles of Ni/Ti and NiC/Ti multilayers consisting of 350 layers with a distribution of bilayer thickness of $10 \le d \le 17$ nm. The reflectivity of the NiC/Ti multilayer is slightly higher than that of the Ni/Ti multilayer by $0.02 \sim 0.03$. This tendency is also seen in the reflectivity profiles of the supermirrors. If this results from the difference in the interface roughness of the Ni/Ti and NiC/Ti multilayers, a larger difference in the reflec-

Figure 1: Neutron reflectivity profiles of the Ni/Ti (•) and NiC/Ti (•) multilayers consisting of 350 layers with a bilayer structure in which thickness is distributed in the range $10 \le d \le 17$ nm. The solid line indicates the calculated reflectivity profile. The inset shows the reflectivity profiles at the Bragg peak on an enlarged scale.

tivity should be found at a higher momentum transfer range. Since the reflectivity difference between the multilayers is very small at the higher momentum transfer range up to 1.2 nm^{-1} , reflectivity difference should be attributed to other factors such as the difference in the lateral and vertical correlation length, not to the difference in the interface roughness.

In order to investigate the effect of interfacial roughness correlation to neutron reflectivity, formulas have been derived according to the perturbation theory using the second-order distorted wave Born approximation $(DWBA)^{3,4}$. In this study, the effect of interfacial roughness correlation on neutron reflectivity in a neutron multilayer mirror is investigated using the reflectivity calculation based on the distorted wave Born approximation.

The derivation of formulas for specular reflection is shown in our previous publication⁵⁾. Neutron reflectivity calculation was per-

原子炉:JRR-3 装置:SUIREN(C2-2) 分野:中性子散乱(装置)

formed for different parameters of the interface where the sample was assumed to be a Ni/Ti multilayer consisting of 30 layers with a bilayer thickness of 10 nm. The effect of interfacial roughness is shown in Fig. 2(a). The solid and broken lines, respectively, indi-

Figure 2: Calculated reflectivity profiles for a Ni/Ti multilayer consisting of 30 layers with a bilayer thickness of 10 nm. (a) solid line, $\sigma = 0$; broken line, the NC factor with $\sigma = 0.60$ nm; dotted line, the perturbation up to l = 1 with $\sigma = 0.60$ nm. (b) solid line, the perturbations up to l = 1 with $\sigma = 0.60$ nm; broken line, the perturbations up to l = 2 with $\sigma = 0.60$ nm, $\xi_{\parallel} = \infty$, and $c_{ji}^{\perp} = 0$; dotted line, the perturbations up to l = 2 with $\sigma = 0.60$ nm, $\xi_{\parallel} = \infty$, and $c_{ji}^{\perp} = 1$. The insets show the reflectivity profiles at the Bragg peak on an enlarged scale.

cate the reflectivity profiles for the interface roughness $\sigma = 0$ and 0.60 nm, which are obtained by the recursive formalism⁶). The interface roughness is included in the Fresnel coefficients proposed by Névot and Croce⁷). These are compared with the perturbation up to l = 1 (very small value of the lateral correlation length ξ_{\parallel}) with $\sigma = 0.60$ nm (the dotted line). The reflectivity profile of the first perturbation is in good agreement with that of the recursive formalism with the NC factor. This may be reasonable since the roughness of the individual interfaces is independently taken into account in the perturbation up to l = 1, which can be regarded as the same treatment as the multiplication of the NC factor.

The effect of roughness correlation is shown in Fig. 2(b). The reflectivity profile obtained by the perturbation up to l = 1 (the solid line) is compared with those up to l = 2with $\xi_{\parallel} = \infty$, $c_{ji}^{\perp} = 0$ (the broken line) and $\xi_{\parallel} = \infty$, $c_{ji}^{\perp} = 1$ (the dotted line), where c_{ji}^{\perp} is the replica factor between interfaces j and $i \ (j \neq i)$. As expected in the above derivation, the difference in reflectivity is seen for $\xi_{\parallel} = \infty$ where the perturbation with l = 2cannot be neglected. The decrease in reflectivity by 0.05 in the Bragg peak at q = 0.65nm⁻¹ is observed for the perfectly correlated interfaces ($c_{ji}^{\perp} = 1$), whereas the effect of the roughness correlations within the same interface on reflectivity is very small ($c_{ji}^{\perp} = 0$).

Neutron reflectivity calculation based on the second-order DWBA has been performed for a Ni/Ti multilayer. The effect of the roughness correlation on reflectivity was obtained for the extreme conditions of the lateral and vertical correlations. The reflectivity decreases only in the Bragg peak for perfectly correlated interfaces, whereas the decrease in reflectivity is very small for interfaces with no vertical correlation. The calculations need to be performed for different sample parameters to test the applicability of the formulas to measured reflectivity data.

References

- R. Maruyama, et al. :"Nucl. Instrum. Methods Phys. Res. A", <u>600</u>, 67(2009).
- R. Maruyama, et al. : "J. Appl. Phys.", <u>105</u>, 083527(2009).
- 3) D.K.G. de Boer : "Phys. Rev. B", $\underline{49},\,5817(1994).$
- 4) D.K.G. de Boer : "Phys. Rev. B", <u>53</u>, 6048(1996).
- 5) R. Maruyama, et al. :"J. Phys. Conf. Series", to be published.
- 6) L.G. Parratt : "Phys. Rev.", <u>95</u>, 359(1954).
- L. Névot and P. Croce : "Phys. Rev. Appl.", <u>15</u>, 761(1980).

1-8-1

Development of a High-Spatial-Resolution Neutron Detector with Wavelength-Shifting Fibre Read Out

T. Nakamura, M. Katagiri, K. Toh, K. Sakasai and S. Soyama

Neutron Instrumentation Section, Materials and Life Science Division, J-PARC Center, Tokai 319-1195

The neutron image detector for energyselective neutron radiography at a pulsed source is one of the challenging subjects because a high spatial resolution and temporal resolution are required for time-of-flight measurements. The specifications required for such detectors are generally a spatial resolution of better than 50 μ m, a temporal resolution of several μ s, a gamma sensitivity of less than 10⁻⁵ and a detector efficiency of 50 % for thermal neutrons. The goal of our development is to develop a detector that fulfills such specifications.

To achieve a spatial resolution less than 1 mm we introduced a fibre-optic taper(FOT) into the iBIX detector ¹⁾. The neutron-detection head of the iBIX detector consisted of the scintillator and the wavelength-shifting (WLS) fibres for light collection. The FOT was implemented in between the scintillator and WLS fibres to magnify the light image, thus improving the spatial resolution.

To increase the neutron-sensitive area we implemented a largersized FOT and a increased number of read-out fibers. A number of fibers in the x and y direction were increased from 16 to 128 whilst the types of WLS fibers, BCF99MC and BCF92AMC, remained the same as before ²⁾. The neutronsensitive area bacame 314 mm². This detective area would fulfill most of the requirements in our experiments. The size of the effective pixel on a scintillator screen became $0.167 \times 0.167 \text{ mm}^2$ with the aid of the FOT whilst the physical size of the pixel was determined by the side length of the fibre, which was $0.5 \times 0.5 \text{ mm}^2$.

The measurement of the beam edge profile revealed that the prototype detector exhibited a spatial resolution of 0.26 ± 0.07 mm. This result was consistent with that with the

demonstrator detector ²⁾. On the other hand the detector efficiency decreaed to 60% relative to that with the demonstrator detector for a neutron wavelength of 4 A. This decrease was understood by the larger light loss for the longer FOT, i.e. less light collection efficiency for larger FOT.

Figure 1 shows the measured neutron beam profile when the detector was covered with the cadmium mask with several holes. The detector clearly measured the beam profiles with a resonable spatial resolution, demonstrating the detector with a sperior imaging capability.

Figure 1: Neutron beam profile measured with the Cadmium mask with holes.

References

- T. Hosoya, et. al: Nucl. Instrum. Meth. A, <u>600</u>, 217(2009).
- T. Nakamura, et al: Nucl. Instrum. Meth. A, <u>604</u>, 158(2009).

原子炉:JRR-3 装置:CHOP(C2-3-3) 分野:中性子散乱(装置)

1-8-3

Visualization of Electric Current by Neutron Spin Phase Contrast Imaging

S. Tasaki, Y. Iwata, T. Tanaka, Y. Abe, M.Hino(A)

Department of Nuclear Engineering, Kyoto University, ^(A)Research Reactor Institute, Kyoto University

Neutron spin phase contrast (NSPC) imaging is a method to visualize the magnetic field integral along the trajectory of neutron. The principle of NSPC is to measure additional phase difference between spin eigenstates of Larmor precessing neutron, by means of neutron spin interferometry. In NSPC imaging, neutron intensity changes sinusoidally, via the phase difference of incident neutron. When magnetic field exist on the way of neutron, the sinusoidal curve is shifted, and the shift is proportional to the magnetic field integral. Moreover, the contrast (visibility) of the sinusoidal curve may change depending on the homogeneity and direction of the magnetic field. In the present study, we apply NSPC method to measure magnetic field induced by electric current, to develop NSPC imaging to visualize electric current distribution.

As a sample, an Al-cylinder with 10mmdiameter and 20mm-length sandwiched by Cu plate is adopted. The electric current flows along with the cylinder. Such current produces the magnetic field proportional and inversely proportional to the distance from the center of the cylinder, inside and outside of the Al-cylinder, respectively. Neutron experiments were performed at C3-1-2-2(MINE-2) beam port of JRR-3M in JAEA. Wavelength of the neutron beam is 0.88nm ($\lambda/\delta\lambda$ =2.7%), available beam size is 10mm in width and 30mm in height. Incident neutron is polarized vertically with 5Q-supermirror polarizer fabricated with Ion Beam Sputtering system in KUR. Then the spin of the neutron is half flipped with resonance neutron flipper. In the middle of the set-up, PI-flipper is installed in order to cancel outer magnetic field and to introduce phase difference ϕ between two spin states of neutron. The sample is located after the PI-flipper and then PI/2-flipper and spin analyzer is set for analyzing the phase of neutron spin wave. Neutron spin analyzer is a V-shape polarizer with 5Qpolarizing supermirror and the transmitted neutron is measured with 2D-RPMT with Li-glass scintillator. Interference fringe is obtained from the change of neutron intensity via the phase between neutron spin states.

An example of measured results is shown in Fig.1. The electric current through Al-rod is 7.5A. The measurements were performed for other values of ϕ , and the phase induced by the magnetic field caused by the electric current is to be analyzed.

Fig. 1. An example of measured result. Neutron distribution changes as the phase difference between two spin eigenstates of neutron, introduced via resonance spin flippers.

Activity Report on Neutron Scattering Research: Experimental Reports **17** (2010) Report Number: 1135

1-8-4

Development of MIEZE spectrometer for pulsed neutrons

M. Kitaguchi(A), M. Hino(A), Y. Kawabata(A), S. Tasaki (B), R. Maruyama(C), T. Ebisawa(C) (A)KURRI, (B)Kyoto Univ., (C)JAEA

Neutron spin echo (NSE) is one of the techniques with the highest energy resolution for quasi-elastic scattering by measuring rotation of the neutron spin[1]. In neutron resonance spin echo (NRSE), two resonance spin flippers (RSFs) replace a homogeneous static magnetic field for spin precession in the conventional NSE[2]. MIEZE spectrometer is a kind of resonance spin echo, which has the advantage to investigate the dynamics of magnetic samples, because of selectivity of the magnetic scattering. We have already demonstrated MIEZE spectrometer with high frequency RSFs. Clear MIEZE signals was observed at cold neutron beam line MINE1 in JRR-3 at JAEA. The effective frequency was 600 kHz and the contrast of the MIEZE signal was 0.58[3].

Now we have applied the MIEZE to pulsed source. The RSFs and the devices for MIEZE spectrometer was set on a beam branch of BL05 NOP beam line in MLF at J-PARC. At the branch pulsed cold neutron beam with the wavelength from 0.3nm to 1.0nm is provided with fine beam divergence. The RSF can be applied pulsed neutrons by using the dumping amplitude of RF magnetic field synchronized with the time of flight of the neutrons[4]. In the case of pulsed neutrons, the contrast of MIEZE signal is always high for all time channel of detector because the beam in each wavelength region is monochromatic due to the pulsed source. We observed clear MIEZE signals with the effective frequency from 0.5 kHz to 600 kHz.

We demonstrated MIEZE spectrometer for pulsed neutrons. We are continuing to develop MIEZE spectrometer for pulsed source for practical uses. We are now discussing to build a neutron spin echo spectrometer at J-PARC[5]. **REFERENCES**:

[1] F.Mezei, Z. Phys. 255 (1972) 146.

[2] R.Gaehler, R. Golub, Z. Phys. B65 (1987) 43.

[3] M.Kitaguchi, et. al., Physica B, 404 (2009) 404.

[4] H.Hayashida, et. al., Nucl. Instr. and Meth. A 574, (2007) 292.

[5] Y.Kawabata, et. al., Nucl. Instr. And Meth. A574 (2006) 1122.

Fig. 1. MIEZE spectrometer at BL05 and MIEZE signal with the frequency of 0.5kHz

This is a blank page.

1. 中性子散乱 9)超伝導現象

1. Neutron Scattering 9) Superconductivity

This is a blank page.

1-9-1

Structural Analysis on Iron-Based Superconductor Pr1111 System with Oxygen Deficiency and Flourine Substitution

K. Kodama^{1,2}, M. Ishikado^{1,2}, F. Esaka³, A. Iyo^{2,4}, H. Eisaki^{2,4} and S. Shamoto^{1,2}

¹Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 ²JST, Transformative Research-Project on Iron Pnictides (TRIP), Tokyo 102-0075

³Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 ⁴Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562

In iron-based high- $T_{\rm c}$ superconductor, socalled 1111 systems, the superconductivity is induced by the partial substitution of flourine for oxygen and the oxygen deficiency which dope electrons to conducting bands formed by Fe 3d orbitals.¹⁾ However, several studies may indicate that the doping level of electrons is not solitary parameter to control the electronic state and the superconducing transition temperature $T_{\rm c}$, and the structural parameters are also important. We have performed sturctural analyses on $PrFeAsO_{1-y}$ and $PrFeAsO_{1-x}F_x$ in order to obtain information on the role of structural parameters to the electronic state and superconductivity in the iron-based superconductors.²⁾

In Fig. 1, T_c of both systems are plotted as functions of electron-doping level, δ , which are determined accurately from the occupancies of O or $O_{1-x}F_x$ sites. T_c - δ curve

Figure 1: T_c of PrFeAsO_{1-y} and PrFeAsO_{1-x}F_x determined by measurements of superconducting shielding diamagnetism, are shown by open circles and squares, respectively.

of $PrFeAsO_{1-y}$ obviously deviates from the curve of $PrFeAsO_{1-x}F_x$, indicating that the T_c value is not determined only by δ -value, at least, in so-called 1111 system even if the sys-

Figure 2: Lattice parameters of a (bottom panel) and c (top panel) of $PrFeAsO_{1-y}$ and $PrFeAsO_{1-x}F_x$ are shown by the cirlces and squares, respectively. The superconduciting and non-superconducting samples are shown by the closed and open symbols.

tem consists of identical lanthanide element.

In Fig. 2, the lattice parameters a and cof both systems are plotted as functions of δ . At similar δ -values, the values of a(c) of $PrFeAsO_{1-y}$ are larger (smaller) than the values of $PrFeAsO_{1-x}F_x$. We note that even the parent compounds in both systems have different lattice parameters although they has very similar composition of $PrFeAsO_{0.989}$ and $PrFeAsO_{0.988}$. The structural parameters of FeAs layer are also different between both systems with similar δ . These results suggest that the difference of structural parameters of FeAs layer is the origin of the discrepancy of $T_{\rm c}$ - δ curves of both systems and the $T_{\rm c}$ -value in the 1111 system is sensitive to the structural parameters.

References

- for example, Y. Kamihara et al. : J. Am. Chem. Soc. <u>130</u>, 3296 (2008).
- 2) Kodama et al. : submitted to J. Phys. Soc. Jpn.

原子炉:JRR-3 装置:HRPD(1G) 分野:中性子散乱(超伝導)

1-9-2

Doping Dependence of Magnetic Excitation in Fe-based Superconductor $LaFeAsO_{1-x}F_x$

S. Wakimoto^{1,2}, K. Kodama^{1,2}, M. Ishikado^{1,2}, M. Matsuda^{1,2}, R. Kajimoto^{2,3}, M. Arai^{2,3}, K. Kakurai^{1,2}, F. Esaka⁴, A. Iyo^{2,5}, H. Kito^{2,5}, H. Eisaki^{2,5}, and S. Shamoto^{1,2}

¹Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

²JST, Transforamtive Research-Project on Iron Pnictides (TRIP), Tokyo 102-0075

³J-PARC Center, JAEA, Tokai, Ibaraki 319-1195

⁴Nuclear Science and Engineering Directorate, JAEA, Tokai, Ibaraki 319-1195

⁵Nanoelectronics Research Institute, AIST, Tsukuba, Ibaraki 305-8562

A new Fe-based high- T_c superconductor LaFeAsO_{1-x} F_x was discovered in 2008⁻¹. One of the most important characteristics of this system, is the existence of two separated cylindrical Fermi surfaces (FSs) $^{2)}$: one is a hole FS at the Γ -point and the other is an electron FS at the M-point. It has been pointed out that the magnetic fluctuation arising from the nesting between the two FSs plays an important role in the superconductivity. In order to test this scenario, we have carried out neutron scattering experiments using the LaFeAsO_{1-x} F_x powder samples with x=0.057 $(T_c = 25 \text{ K}), 0.082 (T_c = 29 \text{ K}), \text{ and } 0.158$ $(T_c = 7 K)$ to study F-doping dependence of the magnetic fluctuation.

Figure 1: (a) $\chi''(\omega)$ spectra. (b) Doping dependence of $\chi''(\omega)$ at $\omega = 11$ meV and T = 4 K. The data at x = 0 is measured at just above the Néel temperature where the spin fluctuation becomes maximum.

Figure 1 summarizes the imaginary part of the dynamical susceptibility $\chi''(\omega)$ in absolute units. Figure 1(a) shows that the $\chi''(\omega)$ for x = 0.057 and 0.082 have maximum at \sim 11 meV and 4 K, whereas the this maximum does not appear at 37 K, above T_c , for = 0.057. This behavior is consistent with the resonance behavior observed in other Febased superconductors $^{3)}$. It is remarkable that the $\chi''(\omega)$ almost vanishes in the overdoped x = 0.158 sample in which the superconductivity is highly suppressed. Figure 1(b)shows the x-dependence of $\chi(\omega = 11 \text{ meV})$, where the data for x = 0 at 140 K is also plotted for comparison. Magnetic fluctuations in the superconducting x = 0.057 and 0.082 samples are comparable to the x = 0. However, those are vanished in = 0.158.

In the present system, F-doping provides electron to the system. Thus the hole FS at the Γ -point should shrink by doping. This affects the nesting condition between the two FSs at the Γ - and M-points. Thus the suppression of magnetic fluctuation in the overdoped x = 0.158 sample is owing to the poor nesting condition by the shrinkage of the hole FS. Our result supports the scenario that magnetic fluctuation by the FS nesting plays an important role in the superconductivity in this system.

References

- 1) Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono: J. Am. Chem. Soc. 130, 3296 (2008).
- D. J. Singh and M.-H. Du: Phys. Rev. Lett. 100, 237003 (2008).
- 3) A. D. Christianson, et al., Nature 456, 930 (2008).

原子炉: JRR-3 装置:TAS-1(2G),TAS-2(T2-4) 分野:中性子散乱(超伝導)

1. 中性子散乱 10)残留応力

1. Neutron Scattering 10) Residual Stress

This is a blank page.

1-10-1

Evaluation of Compressive Deformation Behavior of Zr-Al-Ni-Cu Balk Metallic Glass Containing ZrC Particles by Neutron Diffraction

H. Suzuki, J. Saida¹, J. Katsuyama², M. Imafuku³, H. Kato⁴ and S. Sato⁴

Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

¹Center for Interdisciplinary Research, Tohoku University, Sendai, Miyagi 980-8578

²Nuclear Safety Research Center, JAEA, Tokai, Ibaraki 319-1195

³Department of Mechanical Systems Engineering, Tokyo City University, Setagaya, Tokyo 158-8557

⁴Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577

It has been developed that bulk metallic glasses containing hard particles or fibers exhibit higher strength and higher compressive plasticity as compared with monolithic bulk metallic glasses. In this study, residual stresses of deformed specimens of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass containing 10vol%ZrC particles (10%ZrC-BMG) were measured using neutron diffraction technique to clarify relation between plastic deformation and residual stress, and role of ZrC particle on deformation mechanism was discussed.

Cylindrical specimens, 3mm diameter and 6mm length, of 10%ZrC-BMG compressed with 1.15% (Sample-2), 1.82% (Sample-3), 1.85% (Sample-4), 4.62% (Sample-5), 5.79% (Sample-6) and 7.79% (Sample-7) in axial direction were prepared including undeformed specimen (Sample-1), as shown in Fig. 1. Residual stress of only ZrC phase in the 10%ZrC-BMG was derived from lattice strains of ZrC(220) in axial and radial directions of each sample measured using RESA engineering diffractometer.

Figure 2 shows change in residual stresses of ZrC phase relative to residual stress of sample-1. Tensile residual stress in the order of 300MPa was generated in loading direction of sample-3 just before yielding. According to FEM analysis local plastic deformation occurs around ZrC particles before macroscopic yielding. It is, therefore, considered that this local plastic deformation caused generation of tensile residual stresses in ZrC phase. In further deformation, tensile residual stresses more than 400MPa was generated in Sample-4 and Sample-5, and then the residual stress was released in Sample-6 owing to plastic deformation with multiple shear bands across the sample. The plastic deformation proceeded without fracture until deformation level of Sample-7 due to probably bond-effect of ZrC particles. After reaching strain at Sample-7, shear fracture occurred in the sample as a result of probably transgranalar fracture in ZrC particles.

Figure 1: Stress-strain relation of 10%ZrC-BMG. Each sample was deformed up to each engineering strain indicated by the sample number.

Figure 2: Changes in residual stress of ZrC phase in axial and radial directions.

原子炉: JRR-3 装置: RESA(T2-1) 分野: 中性子散乱(残留応力)

1-10-2

エリアディテクタ方式の中性子残留応力分布測定法の開発 金沢大学人間社会学域人間科学系

(金沢大学大学院自然科学研究科機能開発科学専攻・システム創成科学専攻)

佐々木 敏彦

1. 諸言

鉄道で使われるレールおよび車輪は転動接触 疲労を受け、初期段階では表面部分に金属組織の 塑性フローを生じ、き裂発生やその成長の原因と なる。このため、接触面の剥離やレール折損の危 険が増す。対策として、列車通過時における接触 応力、曲げ応力、熱応力の解析が種々なされてる が、これらのみでは現象の解明には至らないこと が知られている。そのため、これまで評価が比較 的困難とされていた残留応力の影響についての 実態解明が望まれている。これに対して、従来か らの残留応力評価手法である X 線、超音波、磁気 などを利用した方法では測定深さ範囲や位置分 解能、精密さなどの点で不十分な面があり、新し い手法である中性子回折技術への期待が高まっ ている。

一方、中性子法における一つの課題として、中 性子パスが約40mmを超える材料内部の評価が 難しくなる問題がある。このため、本研究では Websterらが提唱した手法である試料を直交2方 向にスライスして解析する方法に加えて、スライ ス後の応力状態に関する特性を利用して平面応 力解析法である中性子 sin² φ 法および中性子 cos α 法を組み合わせたハイブリッド解析法につい て検討した.

中性子 cos a は、中性子イメージングプレート (NIP)を利用して回折環全体を利用して応力測定 する新しい方法である。これまでの検討の結果、 ①基準となる do 値に関する精度が不要である、② 単一入射法のため試料サイズの制約が少ない、③ 転動問題で重要な表層域やせん断応力の測定に 適している、④平面応力および三軸応力の測定が 可能であること、などが判明している。これらの 点は転動接触疲労の評価に適していると考えら れる。

また、Webster 方式ではサンプルをスライスす る結果、平面応力解析が可能となり中性子 sin²φ 法や cos α 法(平面応力解析)が有効になる。本 研究は、これらの手法を用いることで do の精度に 関する制約を大幅に緩和した方法を使用して、従 来、評価が困難とされてきた鉄道材料の内部応力 状態の解明に貢献できることが期待できる。また、 中性子パスの限界である 40mm を超えるような 一般の大型試料への中性子法の利用拡大につな がることが期待できる。

2. 実験方法

中性子測定には、日本原子力研究機構(JAEA)の 残留応力測定装置(RESA)を使用した. 図1に 中性子 IPを用いた測定装置を示す.本装置の構 成は、試験片保持部とNIPを保持するNIPカメラ からなる.NIPカメラは、NIPを平面状に固定す

Fig.1. Photograph of experimental set-up for neutron stress analysis using neutron image plate.

原子力科学研究所3号炉、RESA2、残留応力

るため, 取り付け面に直径 0.5mm の穴を 20mm 間 隔に格子状に空け, 裏側から真空吸引できる構造 とした. NIP の検出面側には, 厚さ 1mm のアルミ ニウム板を全面に被せた.このアルミニウム板の 中央部には円錐状の基準材ホルダを取り付け, 試 験片および基準材(厚さ1mm,直径20mmの円形軟 鋼板)の回折環を同時撮影した.基準材は中性子 回折画像における入射ビーム位置(回折環中心) および NIP と試験片との距離を決定する目的で使 用した.入射ビームは試験片に対して45°(また は30°) 傾斜させて測定した(基準材は垂直入射). 主な測定条件を表1に示す(括弧内は基準材の条 件). 使用した中性子ビームの波長は約 0.21nm で あり, ビームの径は 3mm の円形とした(径 10mm の B₄C 製スリット,および,径 3mm の Cd 製スリッ ト使用). 撮影された回折環画像は, IP 読取装置 (Fuji Film, BAS-1800)にて位置分解能 100 µm, 輝度分解能 16bit で保存した.次に,画像データ から回折環半径方向の回折プロフィルを求め,基 準材の回折環に対する入射ビームの中心位置, 試 験片の回折環半径をそれぞれ求め, cosa 法を三軸 解析用に改良した方法(以下、三軸 cos α法)に より応力を決定した.転動疲労ではせん断応力 τ 13の影響が重要であるが、標準的な的な中性子応力

Table 1. Experimental conditions.

Diffraction	αFe211, 2θ=126°	
Wave length of neutron	0.20888 nm	
beam		
Distance from NIP to	56 mm (20 mm)	
specimen		
Insident angle of neutron	27° (0°)	
beam		
Irradiated time	4.5 hr	
Irradiated area	φ 3mm	
Thickness of specimen	15 mm	
Thickness of s.m.	1.0 mm	
NIP used	Fuji Film,	
	BAS-ND2025	

NIP reader Fuji Film, BAS-1800

 (note: figures in parenthesis indicate for standard material (s.m.))
 測定法では測定例が少なく不明な点が少なくないが、
 三軸 cos α 法はこのような τ₁₃のの測定に有効な特 長を有しており、レールの問題に有効な手法であ

る。

3. 実験結果

(a) measured with slit

(b) measured without slit Fig.2 Debye rings obtained from the used rail. 1-10-2

Fig.3 Image processing of neutron Debye rings for residual stress analysis.

レールの頭頂面の中心部に対し、スリットを用いて gauge volume の深さを変化させた場合、および、スリットを用いない場合について検討した. 垂直入射に対する中性子回折環を測定し、三軸 $\cos \alpha$ 法を適用してせん断応力 τ_{13} および τ_{23} を解析した.

まず、レール試料から測定された a Fe-211 回折 環画像を図2に示す.外側の回折環がレール試料 の211 回折によるものであり、内側は画像解析用 として撮影した基準材(t=1mmの鋼材)からの a Fe-211 回折環である。後者の回折半径が小さい理 由は、IP との距離がレール試料より短いためであ る。

画像解析を経て、各回折環の α Fe-211 ピーク位 置を求め、それと回折環中心との距離を回折環半 径として求め、その中心角に対する変化を求めた。 回折環から格子ひずみ ϵ_{α} を回折環全周に対して 中心角 α が1°間隔で求め,次いで三軸 cos α 法に 必要な a_1 線図および a_2 線図を求めた. a_1 線図およ び a_2 線図のグラフの傾きからせん断応力 τ_{13} , τ_{23} がそれぞれ決定できる.同様なデータ解析を全て の回折環画像に対して行った。図3に中性子回折 環画像の処理方法の概要を示す。

スリットを使用しない場合の応力解析結果を Fig.4 に示す。その結果、τ₁₃はレール踏面中央か らフィールドコーナーまでの範囲において約 50MPa を示し、ゲージコーナーでは-90MPa に符 号が逆転し、応力値もほぼ倍増する傾向が分かる。 この傾向はX線応力測定法によるレール踏面表

Distance from center of rail to gauge corner, mm

Fig.4 Result of shearing stresses as a function of distance from center of rail in width direction obtained by means of neutron image plate. (\bigcirc : τ_{13} , \square : τ_{23})

(a) neutrondiffraction profile.

(b) radius of neutron Debye ring.

Fig.5 Comparison between experimental data and numerical simulation results.

面域に対する測定結果と類似している。すなわち、 表面と同様なせん断応力状態が中性子侵入深さ である数 mm まで及んでいる可能性が判明する。 一方、 τ_{23} は-36MPa から 22MPa の範囲にあり、測 定誤差範囲内の応力値が得られているが、レール 踏面中央部を境にほぼ対称的な分布を示してい る。

そこで、スリットを使用した測定データに対し ても同様な検討を行った。ゲージボリュームの中 心位置が表面からの深さ6.8mmにおけるエュに対し て検討した。得られたせん断応力τι3をレールの幅 方向の位置(中心部からGCへの距離y)に対して 表した結果、測定体積の中心が内部の場合でもGC 側に向かって負のせん断応力方向に変化するこ とが分かった。次いで、スリットの使用の有無を 比較するため、スリットを未使用の場合の測定結 果との比較を行った。二つの結果は、レールの幅 方向に対してほぼ平行に分布し、また、ゲージボ リュームを使用した場合の方が約40MPa程度負値 側にシフトしていることが分かった。このことか ら、表面から6.8mm程度内部の方がややせん断応 力が増大していると推定できる。これは、せん断 応力τ₁₃が接触面から3mm~6mm程度内部に発生 するとのHertzの接触応力理論からの予測と対応 している。

次に、垂直応力成分に関して三軸 cos α 法を適 用して応力計算を行った。この場合には3 方向か ら測定した中性子回折環を用いた。レール踏面の 中心位置から得られた応力成分は以下の通りで あった。

(85.0	-6.7	59.7	
	-377.1	212.6	(1)
		- 55.5	

(単位:MPa、以下同様)

Fig.5(a)は,回折プロフィルのピーク部について、 実測結果とシミュレーションの結果をしめして いるが、両者の傾向はほぼ一致した.**Fig.5(b)**は, 回折環半径について回折プロフィルと同様な比 較を行った結果を表している。その結果、大まか にな傾向についての一致が見られる一方で,細部 においては相違が生じていることが分かる.そこ で、応力解析結果の有効性や誤差の原因などにつ いて検証した.

中性子イメージングプレートでは, X線と同様な「ひずみ効果」以外に、「中性子効果」,「ス リット効果」の原因により中性子回折環が変形する.検証のため、「中性子効果」,「スリット効果」 を考慮し、応力成分の初期値を設定した状態について、中性子回折環および三軸 cosα法に関する 数値的なシミュレーションを行った。こうして得られた応力は,

$$\begin{array}{cccc} (85.2 & -7.0 & 60.1 \\ & -341.6 & 214.2 \\ & -56.0 \end{array}$$
 (2)

となった。このときの初期値に対する応力計算結 果の誤差は平均で1.4%であった。このことから、 三軸 cos α 法による応力解析法が実用範囲内で有 効な結果を与えると判断できる。一方、Fig.5 にお ける測定データと解析結果に見られる誤差はシ ミュレーション結果以上に大きいことから,その 原因としてシミュレーションで前提としている 基本的仮定からの逸脱が原因である可能性が考 えられる.すなわち,1.応力勾配、2.微視的金属 組織、3.弾性的異方性等の作用が働いていた可能 性が考えられる。実験データとの一致には、これ らの考慮が必要と思われ今後の課題である.

- 4. 成果の公表
- (1) X線と中性子による鉄道レールの残留応力、 佐々木敏彦、舘 宏一,水上寿夫,東 寛士、 鈴木裕士,盛合 敦,廣瀬幸雄、日本材料学 会X線材料強度に関するシンポジウム講演論 文集、pp.70-75、2010年、7月

1-10-3

粗大結晶粒測定手法を用いた中性子によるアルミニウム鋳造合金の 極低温内部応力測定

Internal Stress Measurement of Coarse Grain in Aluminum Casting Alloy by Neutron diffraction 神戸市立工業高等専門学校 機械工学科 西田 真之

1 研究目的と意義

近年,中性子による内部応力測定法が確立され, 様々な産業分野で残留応力の測定が行われている. 申請者らはかねてより鋳造材料の内部残留応力測定 を進めているが,鋳造材料の内部にはきわめて粗大 な結晶粒が存在するためその測定を困難なものにし ている.従来は中性子応力測定において1点の測定 に対して十分な測定時間をとることで精度の向上を 試みていたが,ビームタイムの問題が生じると同時 に,求める方位に全く回折線ピークの出現しないケ ースもあるなど多くの問題が残されている.

本研究では粗大結晶粒を含む材料の中性子応力測 定法のひとつとしてロッキングカーブを利用した測 定方法を提案するものである.この方法において, 計算では従来の直交する3軸方向のひずみを測定し Hookeの法則を用いて応力を算出する手順は同じで あるが,求める方向の回折線ピークが得られない場 合であっても,他の方向の回折線ピークから目的と する方向のひずみを計算することで応力の計算が可 能となる.X線応力測定における sin² φ法をロッキ ングカーブで得られる回折線ピークに組み合わせた 手法ともいえる.

さらに、実際の測定においては中性子照射領域内 での粗大結晶に対してエッジ効果が存在し、応力測 定の精度に影響を与えることが確認されている.本 研究ではそれらの影響を Cu 単結晶の小試験片を用 いて粗大結晶を測定する際のエッジ効果を擬似的に 再現し回折線に及ぼす影響を確認すると共に、その 補正方法を検討した.

2 測定理論

試料内部の主軸直交座標系を x₁, x₂, x₃ で定義し, x₁- x₂ 平面内で x₁からの角度を χ, x₂- x₃ 平面内で x₂ 軸からの角度を φ, 同様に x₁- x₃ 平面内で x₃軸からの 角度を ψとする. Fig.1 に座標系と各軸からの角度記

Fig.1 Cartesian coordinate system and angle definitions.

号を示す.

ここで, x₁, x₂, x₃軸方向の主ひずみをε₁, ε₂, ε₃, 主 応力をσ₁, σ₂, σ₃とすると Hooke の法則より応力とひ ずみの関係は次式となる.

$$\begin{cases} \varepsilon_1 = \frac{1}{E} \{ \sigma_1 - \nu (\sigma_2 + \sigma_3) \} \\ \varepsilon_2 = \frac{1}{E} \{ \sigma_2 - \nu (\sigma_1 + \sigma_3) \} \\ \varepsilon_3 = \frac{1}{E} \{ \sigma_3 - \nu (\sigma_1 + \sigma_2) \} \end{cases}$$
(1)

ランダムな微細結晶粒からなる試料では中性子の 照射体積内に回折に寄与する結晶粒が必ず存在し*x*₁, *x*₂, *x*₃軸方向のひずみ測定が可能である.しかしなが ら,結晶粒が粗大になると照射領域中に回折に寄与 する結晶粒は必ずしも存在しない.この場合*x*₁, *x*₂, *x*₃ 軸方向のいずれか,あるいはすべての方位において 回折線ピークが出現しない場合があり,式(1)の Hooke の法則を使用できないことになる.

ここで、Fig.1 に示すような χ , ϕ , ψ の角度を 定義し、 x_1 - x_2 平面内のひずみを ε_{χ} , x_2 - x_3 平面内のひ ずみを ε_{ϕ} , x_1 - x_3 平面内のひずみを ε_{ψ} とすると、そ れぞれの応力とひずみの関係は次式となる.

JRR3、RESA、残留応力評価

$$\begin{cases} \varepsilon_{\phi} = \frac{1+\nu}{E} (\sigma_3 - \sigma_2) \sin^2 \phi - \frac{\nu}{E} (\sigma_1 + \sigma_3) + \frac{1}{E} \sigma_2 \\ \varepsilon_{\psi} = \frac{1+\nu}{E} (\sigma_1 - \sigma_3) \sin^2 \psi - \frac{\nu}{E} (\sigma_1 + \sigma_2) + \frac{1}{E} \sigma_3 \\ \varepsilon_{\chi} = \frac{1+\nu}{E} (\sigma_2 - \sigma_1) \sin^2 \chi - \frac{\nu}{E} (\sigma_2 + \sigma_3) + \frac{1}{E} \sigma_1 \end{cases}$$
(2)

この式より、 ε_{χ} 、 ε_{φ} 、 ε_{ψ} はそれぞれ $\sin^2 \phi$ 、 $\sin^2 \psi$ 、 $\sin^2 \chi$ に対して線形関係で表現されることがわかる.

また,この式から明らかなように, $\phi = 0^{\circ}$ 方向の ひずみは ε_2 , $\phi = 90^{\circ}$ 方向のひずみは ε_3 であり, 同様に $\psi = 0^{\circ}$ 方向ひずみは ε_3 , $\psi = 90^{\circ}$ 方向ひずみ は ε_1 , さらに, $\chi = 0^{\circ}$ 方向のひずみは ε_1 , $\chi = 90^{\circ}$ 方 向のひずみは ε_2 である.これは Fig.1 からも明から であり,また,式(2)からも確認できる.

 $\varepsilon_{\chi}, \varepsilon_{\phi}, \varepsilon_{\psi}$ がそれぞれ $\sin^2 \phi, \sin^2 \psi, \sin^2 \chi$ に対し て線形であることから ϕ, ψ, χ を変化させる過程で, それぞれについて2ヶ所以上のひずみの値が存在す れば $\varepsilon_1, \varepsilon_2, \varepsilon_3$ をそれぞれ推定することができる.

さらに,この $\varepsilon_1, \varepsilon_2, \varepsilon_3$ を用いて式(1)に代入するこ とで主応力 $\sigma_1, \sigma_2, \sigma_3$ を計算することが可能となる.

例えば、 x_2 - x_3 平面内で ϕ 回転に伴うロッキングカ ーブを測定し、回折ピークの存在位置を確認する. 次に、回折線の存在する ϕ の角度で格子ひずみ $\varepsilon_{\phi i}$ を測定する.

測定結果は Fig.2 に示す $\varepsilon_{\phi i} - \sin^2 \phi$ 線図を描き,直線 近似をして $\phi = 0^\circ$ および $\phi = 90^\circ$ 方向のひずみ,す なわち $\varepsilon_2 \ge \varepsilon_3$ を求めることができる.同様にして $\varepsilon_{\psi i} - \sin^2 \psi$ 線図より $\varepsilon_3 \ge \varepsilon_1, \varepsilon_{\chi i} - \sin^2 \chi$ 線図より ε_1 $\ge \varepsilon_3$ を求めることができる.

3 試料の準備

測定試料には、溶融したアルミニウム(JIS A1050)

を異なる冷却速度で冷却し,結晶粒径を調整した試料を用いた.一般的には鋳造用のアルミニウムが用いられるが,本研究においてはあえて粗大な結晶粒を発生させるために純アルミ系の材料を選択した.

アルミニウムはステンレス製の密閉鋳型に入れ真 空炉中で 700℃に加熱して溶融させた.その後,鋳 型を水中で急冷した材料を微細結晶粒試料とし

Fig.3 Microscopic photograph of coarse aluminum sample.

て使用した.また,同様に溶融後,空気中に放置し 自然空冷状態で冷却した試料を粗大結晶粒試料とし て使用した.結晶粒径は粗大結晶粒試料の場合は約 200µm,微細結晶材料で約20µmである.Fig.3に粗 大結晶粒試料の表面観察写真を示す.

製作したインゴットより引張試験片を削り出し中 性子応力測定に用いた. 寸法は試験片の中性子照射 部分は幅および厚さとも 10mm の正方形断面とし, 試験片長手方向の平行部分は 170mm とした. 試料 は小型の引張試験機に取り付けて引張負荷状態で中 性子測定を行った.

4 中性子測定におけるエッジ効果の調査

測定試料には、溶融した Cu (99.9%) を一方向凝 固させきわめて粗大な結晶粒を作り、1辺 2mm の 立方体に切り出した小単結晶試料を製作した. X線 により方位を測定した結果,試料は単結晶の状態で あり 311 の極を中性子測定に使用することとした. 中性子応力測定には日本原子力研究開発機構の改

JRR3、RESA、残留応力評価

良型 RESA I を用いて測定を行った. Cu 試料は角度 調整台上の木片に接着材で固定し RESA I の試料台 にセットした. 今回 RESA I で使用したスリット系 は入射スリットは 5mm × 5mm のスリットであり, 受光側も 5mm のラジアルコリメータを使用した. 回折角が約 20=101°であるため,ゲージボリュー ムはほぼ 1 辺 5mm の立方体となっている. このゲ ージボリュームの照射中心に試料の中心が一致する ように取り付けた. 試料は中性子の照射領域内にお いて完浴状態でセットされている. RESA I 試料台 の XYZ 駆動によって 3 次元的に中性子照射領域内 での位置決めを行い回折線プロファイルを測定した. この測定は粗大粒を測定する状態を擬似的に再現し, エッジ効果の影響を調べることを目的としている.

Fig.3 に試料台に設置した単結晶サンプルの写真 を.また, Table 1 に中性子による測定条件を示す. 今回用いた RESA I における波長は約 1.6Åであり, 回折面には Cu 311 を用いた.

Fig.3 Photograph of Cu single crystal sample and neutron measurement.

走査範囲は Fig.4 に示すとおりゲージボリューム を含む形で Cu の単結晶を走査した. 測定位置はゲ ージボリューム中心位置から Table 2 に示す位置に サンプルを移動し、1 点 20 秒の計測時間で測定を行った. これらの測定位置は事前測定において回折強 度が得られなくなる点をあらかじめ確認して決定している.また、単結晶からの回折線はきわめて強く、 20 秒の短時間の測定においても 1000 カウント以上 の強度が得られた.

Wave length	Ni powder Diffraction planes: 111, 200, 220, 311 λ = 1.592930 Å	
Reactor power	20MW	
Measurement material	Cu single crystal	
Crystal system	FCC	
hkl plane	Cu 311	
Diffraction angle	2 <i>θ</i> = 101.1°	
Slit system	Incident slit : 5 × 5 mm Receiving slit : 5 mm radial collimator	
Detector	PSD, one dimensional detector	

easurement.

Copper single crystal

Fig. 4 Schematic diagram of the relation between the copper scanning area and volume gage.

Table 2 Measurement positions of Cu single crystal.

X-direction	-5, -3, -2, -1, 0, 1, 2, 3 mm, 8 points
Y-direction	-3, -2, -1, 0, 1, 2, 3 mm, 7 points
Z-direction -7, -5, -3, -2, -1, 0, 1, 2, 3, 5, 7mm, 11 points	

5 中性子による粗大粒応力測定

アルミニウム鋳造材料の中性子応力測定には同じ く日本原子力研究開発機構の残留応力測定装置

JRR3、RESA、残留応力評価

RESA I を用いた. アルミニウム試料は引張治具に 装着して RESA I の試料台にセットし, 試料上のマ ーキングを手がかりにして毎回測定位置を確認し, 引張により測定位置が変化しないように考慮してい る. また, 試料にかかる荷重は引張治具に装着した ひずみゲージからひずみ量を測定して負荷荷重に換 算している. Fig.5 に引張治具に装着した試料と測 定の状況を示す. また, Table 2 に中性子による測定 条件を示す.

回折面には Al 311 を用いた. さらに, この測定で RESA I に使用したスリット系は入射スリットは上 下発散を抑えるためのコリメータを挿入し 3mm × 5mmの縦長スリットを併用している.受光側は 3mm のラジアルコリメータを使用した. そのため,中性 子の照射領域は縦長の形状となるが, 試料からはみ 出すことはなく試料内に埋まった状態であることを 確認している.

Fig.5 Photograph of neutron measurement.

6 測定結果と考察

6.1 エッジ効果の調査結果

はじめに Cu 単結晶の設置角度を詳細に調整しな がら,ロッキングカーブを測定し,Cu 単結晶からの ピークの出現する位置を調べた.Fig.4 に Cu 単結晶 からのロッキングカーブを示す.非常に大きな強度 のピークの得られていることが確認できる.ピーク 強度のもっとも大きい θ 角度に Cu 単結晶をセット し測定を行った.

Fig.6 Neutron profile from Cu single crystal.

また, Fig.7(a), (b)は x=0, y=0, z=0 の座標位置を中 心として各位置における回折線ピークから測定され た 20 角度において, 図中に示す断面上の値をプロッ トしたものである.

JRR3、RESA、残留応力評価

Fig.7(a)の結果より,図中に定義される X 方向にお いて、中性子入射側から回折側にかけて 2θ角度が 高角から低角に連続的に変化していることが確認で きる.変化量Δ2θは0.47°となる.つまり、実際の 粗大結晶の測定においては、粗大結晶の存在する位 置が Fig.7(a)における右端と左端では20回折角度に 0.47°の測定誤差が生じることになる.この結果は Cu 小単結晶を擬似的な粗大結晶粒と考えた場合、こ れらの変化はエッジ効果として実際の測定には発現 すると考えられる.

一方,回折線ピークの変化は X 方向において顕著 であるが,Y 方向および Z 方向においてはその変化 は小さいことが確認できる.従って,粗大結晶粒の 存在位置による影響は Fig.7 における X 方向のみを 考慮すればよいことが確認できた.

6.2 回折線ピーク位置が分布する原因

Fig.7 において確認されたとおり, ゲージボリュー ム内部で20回折角度の分布が確認された.この原因 を考察するために,回折線ピークの測定位置に影響 を与える誤差要因をFactor A および Factor B として Fig.8 に図式的に示す.

Factor A は入射してくる中性子そのものに位置的 な分布があり、ゲージボリューム内部の回折線に影 響を与えていると考える場合である.その原因とし てはモノクロメーターにおいて波長を選別する際に 生じる波長の分布である.つまり、中性子の入射ビ ームは均一ではなく、位置の関数として波長が分布 していると考える.

Factor B はゲージボリューム内の一部分を占める 粗大結晶から中性子が回折し、ピークプロファイル の形状に影響を与えている場合である.いわゆるθ -2θ法であればこの影響は現れないと考えられるが、 今回使用したディテクターが PSD 形式であるため、 X 線応力測定におけるφゼロ一定法となっている. このため、回折に寄与する結晶の位置関係が敏感に 反映されていると考える.

これら Factor A および Factor B で表現される要因 を調べるために、中性子がモノクロメーターで回折 して導管に入る手前、つまり、RESA I のシャッタ

Fig.8 The causes of 2θ distribution in gage volume; Factor A: distribution of wavelength, Factor B: diffraction profile from the partial area in the gage volume.

ーの部分に中性子の入射を制限するゴムシートを挿入した.これは5枚の短冊状シリコンからなるモノクロメーターの上下2枚からの中性子をカットし, 中央のシリコンから回折する中性子だけを選択的に 抽出することができるので中性子の波長分布が少な くなると考えられる.

このゴムシートによる入射中性子を制限した測定 の結果は、当然ながら回折線の強度の低下があるも のの,回折角度の変化量 Δ2 θ は0.46°となり, Fig.7(a) で示した何も制限を加えない状態と同じ値となった. また、回折角度の分布もほぼ同様の分布となり、両 者の違いは確認できなかった.

この結果より、回折線ピーク位置がゲージボリュ ーム内で分布した原因は、回折に寄与する結晶とデ ィテクターの位置関係に影響されていることが確認 できた.つまり、回折線分布の支配因子は Factor B である.

6.3 回転測定の導入

これまでの調査結果より、粗大粒を測定する際に

JRR3、RESA、残留応力評価

生じる測定誤差,つまり,20回折角度のばらつきを 補正する方法として Fig.9 に示す試料の反転測定を 提案する.Fig.7 において明らかなように,ゲージボ リューム内の回折線分布は左右対称である.これを 利用して,Fig.9(a)に示す,同じ回折面の裏表から Peak A と Peak B を測定する.両者を測定する際には 試料を 180°回転させて測定するため,粗大結晶の位 置が左右対称の位置で測定できることになる.その 後,両者の測定値を平均すればゲージボリューム内 の分布をキャンセルすることができる.

Fig.9 Schematic diagram of half turn measurement.

Fig.10 に回転測定法でアルミニウム鋳造材を測定 した結果を示す.一方向だけからの測定ではきわめ てばらついた測定結果となるが,180°反転後の測定 データと平均を取るとばらつきはキャンセルされて, 横軸を sin² ¢ とした場合にほぼ直線に近づくことが 確認できる.

また, $\sin^2 \phi = 0.7$ 付近のばらつきの最も大きい部 分での変化量 $\Delta 2\theta$ は約 0.3° となり Fig.7 で確認され た変化にほぼ対応する値である.

さらに、Fig.11 は反転法によって得られた平均値の

みを20-sin² ∉線図として示した結果である.段階的 に加えた引張負荷に対して傾きが対応しており、本 測定の有効性が確認できる.

Fig.10 Result of half turn measurement of aluminum casting.

Fig.11 Result of 2θ - $\sin^2 \phi$ diagram by half turn measurement under several loading.

7 結論

1) 小単結晶を用いた測定の結果, ゲージボリューム 内で PSD ディテクターと結晶の位置関係に起因す る回折線ピークの分布が発生している.

2) 回折線ピークの分布は試料を 180° 反転させ測定 値を平均することでほぼキャンセルできる.

3) ロッキングカーブ法と反転法で測定した 2 θ - sin² ϕ 線図はほぼ直線となり,負荷に対してその傾きが 対応した.

JRR3、RESA、残留応力評価

8 今後の方針

平成 21 年度の JRR-3 の停止などもあり,最終目 標の極低温測定がまだできていない. さらに,今回 の結果はアルミニウム鋳造材を引張試験片形状に加 工して行ったため,複雑形状の実用部材,特に 180° 回転の前後で中性子の透過経路(パス)が異なる形 状の場合に同様の測定方法が有効かどうかを判断す る必要がある.従って,本研究は以下の2点につい て継続的に測定を行う予定であり,平成23 年度の大 学開放研の施設共同利用に申請させていただいてい る.

 1. 粗大結晶粒を含むアルミニウム鋳造合金の中性 子応力測定(複雑形状を持つ実用部材に適用)
 2. 粗大結晶粒を含むアルミニウム鋳造合金の"極 低温"中性子応力測定

9 成果の公表

論文

 Neutron Stress Measurement of Coarse Crystal Grain in Aluminum Casting Alloy
 MASAYUKI Nishida, TAKAO Hanabusa, TATSUYA Matsue and HIROSHI Suzuki
 Materials Science Forum Vol. 652 (2010) pp 243-248.
 Neutron Stress Measurement of Coarse Crystal Grain in Aluminum Casting Alloy
 MASAYUKI Nishida, TAKAO Hanabusa, TATSUYA Matsue and HIROSHI Suzuki
 Materials Science Forum, in press.
 国際会議発表
 Residual Stress Measurement of Coarse Crystal Grain in Titanium Casting Alloy by Neutron Diffraction

Masayuki Nishida, Ayumi Shiro, Tiang Jing, M.Rifai Muslih, Takao Hanabusa The 8th International Conference on Residual Stresses, Denver, USA , 4–8 August, 2008 , p.169

2. Diffraction Stress Measurement on Coarse Grained

Materials Takao Hanabusa, Kazuya Kusaka, Masayuki. Nishida The 8th International Conference on Residual Stresses, Denver, USA, 4–8 August, 2008, p.173

3. X-Ray Stress Measurement of Coarse Grained Cast Aluminum

Takao Hanabusa, Masayuki Nishida, Daiki Tadashige International conference on advanced materials development and performance (AMDP2008).

2008,10,13-15, Beijing, China, CD-ROM proceeding.

4. Neutron Stress Measurement of Coarse Crystal Grain in Aluminum Casting Alloy

MASAYUKI Nishida, TAKAO Hanabusa, TATSUYA Matsue and HIROSHI Suzuki

The 5th International Conference on Mechanical Stress Evaluation by Neutrons and Synchrotron Radiation (MECASENS V), 2009.11.10-12, p.133, Ibaragi, Japan.

国内会議発表

1. 鋳造粗大結晶材料の中性子応力測定 西田真之, 城鮎美, 渡邉義隆, M. Rifai, Tiang Jing, 英崇夫, 斉藤徹, 鈴木裕士 第43回X線材料強度に関するシンポジウム, 2008.7.10-11, 東京, pp.194-199 2. 粗大結晶粒材の中性子応力測定 西田真之, 英崇夫, 城鮎美, 渡邊義隆, 斉藤徹, 鈴 木裕士 日本材料学会第57期学術講演会, 鹿児島, pp.301-302, 2008.5-24-25 3. 粗大結晶粒の中性子応力測定 西田真之, 英崇夫, 渡邊義隆, 鈴木裕士 第 52 回日本学術会議材料研究連合講演会, 2008.10/22-24, 京都, pp.231-232 4. 粗大結晶を有するアルミニウム鋳造合金の中性 子応力測定 西田真之, 松英達也, 英崇夫, 鈴木裕士 第44回X線材料強度に関するシンポジウム、 2010.7.8-9, 京都

JRR3、RESA、残留応力評価

1. 中性子散乱 11)その他

1. Neutron Scattering 11) Others

This is a blank page.

1-11-1

Renovation of Ge-crystal monochromator for triple-axis neutron spectrometer AKANE

H. Hiraka, Y. Miyake, K. Ohoyama, Y. Yamaguchi, K. Yamada Institute for Materials Research, Tohoku University

Neutron scattering spectroscopy is a powerful probe to study phonon and magnon excitations in condensed matter physics. Renovation of neutron monochromator, which properly branches monochromatic neutrons from a white beam, is therefore one of the instrumental key issues in neutron science; especially, due to the lack of neutron beam flux. Ge and Si single crytals have been one of the typical components for neutron monochromator, because high-quality and large-size crystals are easily available. However, because of a mismatch between the incident-beam divergence and the small mosaicity coming from perfect crystals, the neutron reflectivity of Ge and Si is severly low and much efforts have been devoted so far to overcome it.

We have tried to introduce mosaic crystals into Ge crystals appropriately by pressing at high temperatures. Eventually, an optimal hot-pressing condition was determined [1,2], so that Ge crystals with a mosaic width of ~0.3 ° and a peak reflectivity of ~40% are well reproduced [Fig.1(a)]. A vertically focusing-type Ge monochromator, which was renewed for a KINKEN triple-axis spectrometer AKANE, is shown in Fig.1(b).

We substituted this renewed monochromator for the previous one on AKANE, and first characterized the beam size of 24w*32h mm2 at the sample position. This area is about 1.5 times as large as the previous one, and the neutron density per area is confirmed to be unchanged. Second, we radiated the monochromatic neutron beam (=2.0 A) onto relatively large samples and measured scattered-neutron intensity. Figure 1(c) shows a comparison of reflected intensity with previous one by using a large sample. The magnetic Bragg reflections are enhanced in intensity by ~60%, as expected from the beam size. Further, a newly supplied second-wavelength mode (=1.3 A) works well for highenergy excitation measurements, as seen in Fig. 1(d). Present renovation not only vitalizes the scientific research on AKANE, but also opens new fundamental techniques on neutron scattering.

References

 Y. Miyake, H. Hiraka, K. Ohoyama, Y. Yamaguchi, K. Yamada; J. Phys. (Conf. Ser.), accepted on Sep. 04 in 2009.
 Y. Miyake, Master Thesis of Science (Tohoku University, Feb. in 2010).

Fig. 1. (a) Rocking curves of Ge piece before and after hot-press. (b) Renovated Ge(113) monochromator. (c) Magnetic Bragg peaks before and after monochromator renovation. (d) Phonon peak under the newly equipped second-wavelength mode.

Activity Report on Neutron Scattering Research: Experimental Reports 17 (2010) Report Number: 1071

1-11-2

Activity in 2009 of Kinken Powder Diffractometer HERMES

K. Ohoyama

Institute for Materials Research, Tohoku Univ.

In 2009, 42 days were used as IRT experiments: experiments for substitute proposal: 16 days, experiments for IRT members; 18days, and 8day for maintenance. A noteworthy result is that polarized neutron diffraction experiments are succeeded on HERMES with a 3He spin filter method. We succeeded in observing flipping ratio of single crystal of Cu2MnAl and Ni powder. In Fig.1, Flipping ration of the 111 reflection of Cu2MnAl single crystals obtained on HERMES. The effective polarization was about 15%; though this effective polarization was quite poor because of problems of connection of magnetic fields, this experiment was the first diffraction experiment with a 3He spin filter in Japan. Since HERMES has wide observable Q range, polarised HERMES is quite suitable for investigations of magnetic diffuse scattering, in particular, ferromagnetic metallic glasses. Note that the He spin filter method is important for spectrometers in J-PARC as well as HERMES. In 2010, IRT has began polarized neutron diffraction experiments to observe magnetic diffuse scattering of magnetic metal alloys. This project is based on collaboration among KEK-JAEA-Tohoku Univ.

Another important development is practical application of high energy mode on HERMES. Rotating Ge 331 monochrometer by just about 5°, user can user 1.1A neutron, which make it possible to observe up to 11A-1. By the high energy mode, IRT group has succeeded in observing magnetic reflections of ErB2C2 up to 9A-1, which gave whole information of magnetic form factor of Er3+. This mode is quite useful for magnetic metallic glasses as well as observation of magnetic form factor.

In 2010, HERMES has a plan of upgrades; 1) installation of 3He filter with laser pumping system, which make it possible to obtain stable and high polarization beam, 2) installation of 20cm Ge monochrometer, which gives about 1.7 times stronger beam flux, 3) installation of a slave machine for educational purpose.

Fig. 1. Flipping ratio of 111 reflection of Cu2MnAl single crystals obtained on Polirised HERMES
2. 中性子ラジオグラフィ

2. Neutron Radiography

This is a blank page.

Development of the Imaging System Using a Neutron Color Image Intensifier

R. Yasuda, T. Nojima, H. Iikura, T. Sakai and M. Matsubayashi Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

We continued a project to develop a highresolution neutron-imaging system with approximately 10 μ m spatial resolution to visualize regions of ≤ 0.2 mm thickness such as a membrane-electrode assembly including a gas diffusion layer in a fuel cell using the thermal neutron radiography facility (TNRF). To improve the spatial resolution of the neutronimaging system, we developed the imaging system using a neutron color image intensifier (NCII)¹⁾.

An NCII is an electron tube used for realtime neutron imaging by converting a neutron profile to a visible image. We chose B_4C as a neutron converter material because it has large neutron capture cross-section and is less sensitive to gamma-ray than Gd_2O_3 . B_4C is deposited on the aluminum substrate and a CsI acicular scintillator is deposited onto the B_4C layer as an input phosphor layer. ${}^{10}B_4C$ emits α particle after capturing neutron, α particles from ¹⁰B₄C are incident in a CsI acicular scintillator and emit photons. ²⁾ Comparing with the range in a CsI acicular scintillator, that one of internal conversion electrons from Gd_2O_3 is about 20 μ m, and 4 μ m for α particles from ¹⁰B₄C. Therefore, higher spatially resolved neutron image is obtainable. The diameter of the NCII sensitive area can be selected among 2 and 4 inch simply by changing the electric lens configuration on demand. By combining this image intensifier with a suitably tuned high-sensitive color CMOS (Complementary Metal Oxide Semiconductor Image Sensor) camera with 5,614 x 3,744 pixels through a large macro lens and a mirror system, higher sensitivity and wider dynamic range are simultaneously attained.(see Fig. 1) The results of experiments using a sensitivity indicator (SI) $^{3)}$, at the MUSASI-L port (flux: $1.0 \times 10^6 n/cm^2 \cdot s$) showed that the B₄C-type NCII system can clearly resolve the narrowest gap of 12.7 μ m

原子炉: JRR-3 装置: NRF(7R, C2-3-3-1)

prepared in the SI as shown in Fig. 2. It was confirmed that the B_4C -type NCII system meet the requirement for fuel cell imaging.

Figure 1: Schematic diagram of the B₄C-type neutron color image intensifier imaging system.

Figure 2: Captured image of the sensitivity indicator by the system. The 12.7 μm wide gap was clearly observed.

References

- K. Nittoh, C. Konagai, T. Noji and K. Miyabe :"New feature of the neutron color image intensifier ", Nucl. Instr. and Meth. A <u>605</u>, pp. 107-110 (2009).
- K. Nittoh : "Neutron Color I.I.TM Spawning New Applications for Inspection Technologies", TOSHIBA REVIEW 2009. VOL.64 NO.7 (2009).
- J.W.F. Markgraf and R. Matfield :" Practical Neutron Radiography ", ed. J.C. Domanus (Kluwer Academic Publishers, Dordrecht, 1992), 175-178.

分野:中性子ラジオグラフィー(その他)

Upgrading of Experimental Circumstances in TNRF

T. Nojima, H. Iikura, R. Yasuda, T. Sakai, H. Hayashida¹ and M. Matsubayashi Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195 ¹J-PARC Center, Tokai, Ibaraki 319-1195

JRR-3 thermal neutron radiography facility (TNRF) has two radiography rooms. The room closest to the reactor core is named TNRF-1 and the other named TNRF-2. The original TNRF-2 was 700 mm wide, 2000 mm long and 1790 mm tall. The entrances to this room are a biological shielding door and a 1000 mm x 860 mm roof hatch. The biological shield of TNRF-2 consisted of 300 mm thick steel, 220 mm thick polyethylene (PE) and 30 mm thick boron contained PE (BPE) for the main part of the roof and the side walls. In order to meet users 'requirements and to improve experimental circumstances, we decided to expand the inner space of TNRF-2. As the result of shielding calculation using ANISN code, it was confirmed that the shielding consisting of 300 mm thick steel, 85 mm thick PE and 25 mm thick BPE meet the requirement from the radiation protection guideline in JRR-3 ($\leq 25\mu Sv/h$). The inner space of TNRF-2 was expanded to 980 mm wide, 2000 mm long and 1930 mm tall as shown in Fig. 1. After the expansion work, the shielding measurement was conducted and the highest dose equivalent rate of 14 μ Sv/h was obtained.

We introduced a state of the art fuel cell control and testing infrastructure to TNRF. Figure 2 shows the schematic diagram of TNRF fuel cell infrastructure. Available for general use are a fuel cell test stand, an electronic load device, a humidification system, a hydrogen supply system, as well as supplies of other gases, hydrogen detectors and alarm, interlock system and so on. The fuel cell test stand is the most important component and allows users to control the humidity, pressure, flow rate, temperature and gas composition of the fuel gases entering the fuel cell. We selected a storage-alloy-type hydrogen tank for safety reason.

Figure 1: Inside view of TNRF-2 from the shielding door opening. Left side photograph was taken before the expansion work and right one after the work.

Figure 2: Schematic diagram of TNRF fuel cell infrastructure.

原子炉: JRR-3 装置: NRF(7R, C2-3-3-1)

分野:中性子ラジオグラフィー(その他)

Three-Dimensional Observation of Water Distribution in PEFC by Neutron CT

N. Takenaka, H. Asano, H. Murakawa, K. Sugimoto, R. Yasuda¹ and M. Matsubayashi¹ Department of Mechanical Engineering, Kobe University, Rokkodai, Kobe 657-8501 ¹Quantum Beam Science Directorate, JAEA, Tokai, Ibaraki 319-1195

A polymer electrolyte fuel cell (PEFC) consists of a membrane electrode assembly (MEA), gas diffusion layers (GDL), hydrogen and oxygen supply channels. At the anode, protons and electrons are generated, while at the cathode the protons and electrons combine to form water. The condensed water may affect on the fuel cell performances. In order to clarify the water effects on the PEFC, neutron radiography is a powerful tool for visualizing the in-situ PEFC, and we have tried for measuring the water transport phenomena by using neutron radiography systems.¹⁻³ In this study, three-dimensional observation of water distribution in the PEFC by neutron computed tomography (CT) was carried out.

In order to observe the detail water distributions around the MEA and the GDL, a micro-CT PEFC had been developed. Figure 1 shows the visualized PEFC. The MEA and the GDL are sandwiched between air and hydrogen gas channels. Size of the gas channel is 1 mm-width and 0.5 mm-depth. Under the operation, the PEFC was kept at room temperature, hydrogen was supplied at 20 cc/min, air was supplied at 30 cc/min and current density was set at 245 mA/cm^2 . Pictures were taken by a cooled CCD camera (PIXIS 1024, Princeton Instruments) with resolution of 1024×1024 pixels and grev scale of 16 bit. A picture was taken every 2.25 degree. The exposure time was set at 15 sec. A CT was carried out using the 80 pictures which correspond to 180 degree.

Figure 2 shows the CT reconstructed images at middle height of the PEFC. The existence of the O-ring is clearly seen before the PEFC operation. After the operation, water was generated in the PEFC. As a result, water is observed in the channel. Furthermore, image processing for obtaining the water distribution was carried out. It can be seen that

原子炉: JRR-3 装置: NRF(7R, C2-3-3-1)

the water exist around both in the channel and O-ring. Existence of water in the PEFC could be confirmed three-dimensionally by using the neutron CT. In this study, the spatial resolution of 50 μ m was achieved.

Three-dimensional water distribution was obtained by using neutron radiography, and existence of water in the PEFC could be confirmed. Although water existed around O-ring, it was possible to detect the water position in the PEFC. The spatial resolution of 50 μ m was achieved.

Acknowledgement

This research acknowledges NEDO to financial support.

Figure 1: Visualized Small-sized PEFC for CT.

Figure 2: CT reconstructed images.

References

- T. Ueda, et al., J. Power and Energy Systems, Vol.2, No.3, pp.997-1008 (2008).
- I. Sakata, et al., Nucl. Instr. and Meth. A 605, 131-133 (2009).
- H. Murakawa, et al., Nucl. Instr. and Meth. A 605, 127-130 (2009).

分野:中性子ラジオグラフィー(その他)

中性子ラジオグラフィによるエネルギー機器内熱流動現象の可視化・計測の高度化

Development of Visualization and Measurement Method using Neutron Radiography for Thermal Hydraulics Phenomena in Energy Equipment

神戸大学大学院工学研究科機械工学専攻:竹中信幸,浅野等,村川英樹,杉本勝美 東京都市大学工学部原子力安全工学科:持木幸一

1. はじめに

エネルギー変換機器,エネルギー輸送機器,そ して電子機器冷却機器では,機器内部の熱流動現 象が機器性能に及ぼす影響が大きく,性能改善に は流動状況の把握が必要である.特に,流体が相 変化を伴う場合など気液二相流として流動する 場合には,熱流動特性は流動様式に強く依存し, その流動様式は流路形状に強く依存するため,実 機での流動挙動の可視化が必要とされる.一般に, 熱移動を伴うエネルギー機器は金属容器で構成 され,複雑な構造を有していることから,その形 状や熱移動条件を維持して,流路壁を可視部材で 置換し可視化することは困難である.X線での可 視化を考える場合,X線は金属での減衰が大きく, それに対し水や冷媒での減衰が小さいことから, やはり困難である.

熱中性子線は、多くの金属をよく透過する一方、 水や水素原子を含む流体、そして特定の元素によ く減衰する特性を有することから、金属内の流体 の可視化に適している.本研究では、エネルギー 機器内、特に実用機器内の流動現象の可視化・計 測をもとに機器性能に及ぼす影響を明らかにす ることを目的とする.実験は、JRR-3 実時間熱中 性子ラジオグラフィシステムにおいて行われた.

ここでは,

a. 小型レシプロエンジン内潤滑オイルの挙動

- b. プレート熱交換器内冷媒挙動
- c.曲りを有するヒートパイプ内冷媒挙動 に対する研究成果を報告する.
- 2. 小型レシプロエンジン内潤滑オイルの挙動
- 2.1 背景と目的 実時間中性子ラジオグラフィでは試験体で減 衰した中性子線を検出部で可視光に変換し、その

像をカメラで撮影するが、計測でのダイナミック レンジは、試験体の構造とともに検出器のゲイン に依存する.中性子イメージインテンシファイア (以下、中性子 I.I.とする)が開発され、中性子強 度から可視画像輝度への高いゲインでの変換が 可能となったことから、撮像システムの性能評価 を兼ねて透過厚さが厚く複雑な構造を有する4ス トロークエンジンの可視化を行った.回転するエ ンジンを動画観察し、内部機構の動きと潤滑油の 挙動を明らかにすることを目的とする.

2.2 実験装置

使用したエンジンの外観を Fig.1 に示す. 25cc の4ストローク農業ポンプ用小型エンジンである. 本体はアルミニウム製である.実験では燃料によ る運転ではなく,電気モータ駆動で回転させた. 実験装置はターンテーブル上に設置し,ターンテ ーブルの回転で照射方向を設定した.エンジン内 のオイルの循環は,ピストンの上下動による圧力 変動が駆動力となり,パイプを通してエンジン下 部からカムギヤボックスおよびクランクケース に供給される.ここでは,エンジン回転による潤 滑油の循環の様子を可視化した.

Fig.1 Visualized engine.

エンジンの回転数は 300rpm から 1200rpm の範 囲で設定した.中性子 I.I. とカラーCCD カメラで 動画 (30 fps) が撮影された.カラーCCD カメラ は東芝製であり,輝度階調は 8 bit,画素数は 640×480 である.シャッタースピードは 1/500 second とした.

2.3 実験結果

エンジン内部にオイルが満たされていない時 の可視化画像を Fig.2 に示す.アルミニウム製ボ ディーを透過し,内部の構造が可視化されている. ピストン,カムギア,クランクシャフト,吸排気 バルブなどの内部の部品は中性子線の減衰が大 きく,黒く可視化されている.動画においても回 転に同期した部品の運動をはっきりと見え,吸気, 圧縮,膨脹,排気の4行程を確認できた.

エンジン内部がオイルで満たされた時の可視 化画像をFig.3 に示す.Fig.2 で見えていたカムギ アやクランクシャフトはオイルによって見えな くなり,カムギヤボックスやクランクケース内に オイルが満たされ黒く可視化されているのがわ かる.オイルの挙動を鮮明にするため,オイルが ある画像からオイルがない画像を差し引き(演算 では割り算),オイルでの減衰を可視化した.画 像処理はエンジンの動きに同期させ連続フレー ムに対し行ったが,ここでは1フレームを取り出 し,Fig.4 に示す.オイルのみが黒く可視化され ているのがわかる.これよりエンジンの機構とエ ンジン回転時の各部品へのオイル供給の流れを 鮮明に可視化することができた.

3. プレート熱交換器内冷媒挙動

3.1 研究背景

近年,省エネルギーとともに熱エネルギーの有 効利用に対する要求の高まりから,熱交換器の高 性能化が求められている.プレート熱交換器は単 位容積当たりの伝熱面積が大きいことから熱交 換器のコンパクト化,流体間の温度差の縮小に寄 与できるが,複雑な流路形状であるため作動流体 が気液二相流の場合には流動様式が伝熱特性に 強く影響を及ぼす.これまで,垂直面に配置され た単流路に対する沸騰熱伝達特性を実験的に評 価してきたが,熱通過率は冷媒が下降流となる方 が上昇流の場合より 10%程度高くなった.通常, 浮力により蒸気が排出されやすい上昇流のほう が伝熱性能は高いとされ,反対の傾向が得られた. これは.熱交換器内部の相分布の影響が大きいと 考えられることから,上昇流での性能劣化の要因 を明らかにするため,中性子ラジオグラフィでそ の流動挙動を可視化し,相分布および気液相対速 度の指標となる平均ボイド率を計測した.

Fig.2 Visualized image without oil

Fig.3 Visualized image with oil

Fig.4 Visualized image of oil behavior via image processing.

3.2 実験装置および実験方法

試験部には SUS 製ブレージングプレート熱交換器(日阪製作所 BX型)を使用した.プレス加

工で波型の凹凸が形成された(Fig.5)厚さ0.5mm のプレートを4枚積層させ真空ロウ付けすること で3つの並行流路を形成した.隣接するプレート の溝のパターンは左傾斜と右傾斜で左右対称で あり,積層されたプレート間には網目状の流路が 形成される.プレートー枚あたりの伝熱面積*A*は 0.0123 m²,2枚のプレート間(単流路)の容積*V* は0.02 L である.これより,単流路の平均水力等 価直径はD=4V/A=3.36 mm となる.

Fig.5 Tested plate configuration.

作動流体は HCFC-141b (化学式: CH₃CFCl₂, 沸 点:27.9 °C)を用いた.上昇流実験では図中 x か ら紙面に対して垂直方向に,下降流実験では図中 y から作動流体が供給された.作動流体を中央の 流路に,その両側にはフロリナート FC-3283 (沸 点:128°C)を対向流となるように供給して作動 流体を加熱,沸騰させた.各流路の出入口には熱 電対が設置され,フロリナートの出入口温度差, 流量から熱交換量が算出された.また,フロン側 では入口圧力,試験部差圧が計測された.

実験条件として,作動流体質量流量 $G_f \ge 0.0052$ ~0.026 kg/s の範囲で設定し,入口条件をサブクー ル液(入口サブクール度 $\Delta T_{subin} = 10$ K),飽和液 (入口熱力学的平衡クォリティ $x_{in} = 0$),湿り蒸気 ($x_{in} = 0.01$)の3通りとした.

中性子線は試験部前面に照射し,透過像を撮影 した.動画での撮影に加え,高空間分解(200 µm/pixel),高輝度分解能(16bit)での静止画計測 を行った.静止画計測では露光時間4秒とし,作 動流体が流れていないときの画像,液単相流での 画像との比較演算でボイド率分布を算出した.得 られたボイド率は4秒間の時間平均に相当する.

3.3 実験結果

可視化画像から得た二次元ボイド率分布を Fig.6 に示す. ボイド率がグレースケールで示され ている.画像中央に見える水平の影は試験部での 中性子の散乱の影響を補正するために用いた中 性子吸収体 (B₄C) である. Fig.(i)が上昇流, Fig.(ii) が下降流の結果であり、それぞれ入口サブクール 液 (Fig.(a)), 湿り蒸気 (Fig.(b)) に対して示され ている. 作動流体がサブクール液で流入する場合, 試験部内部(図中△印)で沸騰が開始し,ボイド 率が上昇している様子が確認できる. 下降流のほ うが二相流になっていると考えられる領域が広 く,これが上昇流より伝熱性能が高くなった要因 と考えられる.一方,湿り蒸気で流入する場合, 上昇流では,入口付近で気相が中央に多く分布し, 上昇するにつれて横方向に分散する様子が動画 像から確認された. その結果, 上昇流では流路拡 大部(網状の流路であり,個々の流路が拡大され るわけではない)で液が両端に多く流れる傾向が あった.一方,下降流では、同じ流動条件であっ ても液相の強い偏流は見られず、流路全体に一様 に流れることが確認された.液単相に近い部分で は熱伝達率が低く、上昇流の熱通過率を低下させ る要因になったものと考えられる.

水平断面平均ボイド率を算出し,流れ方向にプ ロットした結果を Fig.7 に示す. 横軸は上昇流, 下降流それぞれの入口からの距離を表す. 図中, いずれの場合も周期的な変動が見られるが,これ は流路形状に起因するものであり,流路の節や両 端の盲管部に液相が滞留しているためである. ボ イド率の入口から出口に向けての勾配は下降流 に比べ上昇流が大きい. つまり,上昇流では入口 付近で液の偏流がありボイド率が低く,徐々に加 速されボイド率が高くなるが,下降流では液が流 路全体に流れる傾向があり,上昇流より全体に高

くなっていた.熱伝達が高い高ボイド率の蒸発域 の面積が下降流の方が広くなっていることが,熱 通過率の差異の要因だと考えられる.

4.曲りを有する可変コンダクタンスヒートパイ プ内冷媒挙動

4.1 研究背景

可変コンダクタンスヒートパイプ(VCHP)は 不凝縮性ガスの封入で蒸発温度を受動的に所定 の温度範囲内に維持することが可能な冷却デバ イスである.凝縮部に不凝縮性ガスを維持するた め凝縮部は垂直配置とし,蒸発部より上部に配置 する必要があるため,冷却面の配置によっては蒸 発部と凝縮部の間に曲がり部を設けることがあ る.この場合,機器性能が設置姿勢の影響を受け るとともに施工の方法で初期不良を起こすこと が経験的に知られている.その対策として,ベン ド部に薄板を挿入することが試され,効果を上げ ているがその理由が解明されているわけではな い.

中性子ラジオグラフィによる冷媒流動の可視 化結果をもとに性能低下の要因を解明すること を目的とする.

4.2 実験装置及び実験方法

可視化実験で使用した VCHP 形状を Fig.8 に示 す.管は銅製,内径 5.4 mm の溝付き管で,蒸発 部を水平,凝縮部を垂直とし,中間断熱部で 90° 曲げられている.作動流体には水を用い,不凝縮 性ガスとして窒素ガスが封入された.蒸発部には 上面からカートリッジヒータを用いてアルミニ ウム製ブロックを介して加熱され,凝縮部にはア ルミニウムフィンが取り付けられ,室温空気との 熱交換で冷却された.蒸発器への液の還流促進の ため Fig.8 中の位置に挿入された内挿板の有無, 設置姿勢の影響が評価された.蒸発部下部と屈曲 部の外壁温,空気温度が熱電対で計測された.

蒸発部が水平となる状態を標準姿勢 $\theta = 0^{\circ} と$ し、この状態で加熱量を 20 W から 33W まで変化 させた実験、姿勢の影響を見るため紙面に垂直な 軸を中心に加熱量 20W で角度を -30° ~30°に姿勢 を変化させた実験を行った.また、液を一度凝縮 部に移動させるために姿勢を倒立状態(135°)まで 変化させ、液を凝縮部へ移動させた後に標準姿勢

に戻した場合の起動特性を観察した. 可視化像は EB-CCD カメラで 30 fps で撮影した.

4.3 実験結果

(a) 標準姿勢での動作 試験部Cの標準姿勢(θ= 0°)で、加熱量を20W一定とした場合の加熱開始 からの各部温度変化を Fig.9 に示す.加熱開始後 蒸発部,屈曲部の温度が上昇し約150秒後には温 度がほぼ定常となった.挿入板と蒸発部下部内壁 の間に液が保持されている様子、屈曲部では液塊 が蒸気流によって振動している様子が映像から はっきりと観察された (Fig.10(a)). 定常状態で得 られた平均温度を試験部別に Fig.11 に示す. この 図から試験部 A, C, D はいずれも蒸発部と屈曲 部の温度差がなく,正常に動作していることがわ かる.しかし、充填量が少ない試験部Bについて は蒸発部の温度が高く、ドライアウトに至ってい るものと考えられる. 可視化画像(Fig.10(b))か ら,液は挿入板と屈曲部内側内壁の間に保持され ており, 蒸発部へ供給されていないことが確認さ れた.

Fig. 9 Change in temperature on start-up.

Table 1 Specification of VCHP.

Туре	filling amount of refrigerant	
А	0.39 g / 6.98vol%	w/o insert
В	0.25 g / 4.47vol%	
С	0.50 g / 8.94vol%	With
D	0.98 g / 17.53vol%	Insert

(c) Type C (d) Type D ($\theta = 30^\circ$, Heat input 20 W) ($\theta = -30^\circ$, Heat input 20 W)

Fig.10 Refrigerant behavior in steady condition.

Fig.11 Average temperature in steady condition.

(b) 姿勢変化による動作 姿勢の影響をみるため、加熱量一定のもと試験部をθ=0°から 30°、0°から-30°に 5°ずつ変化させた.試験部 C の場合、蒸発部が屈曲部より上になるθ=30°では、前項(Fig.10(b))で示した液塊が静止したが(Fig.10(c)),θ=0°の場合と同等の熱輸送性能が得られた.しかし、充填量が多い試験部 D では、蒸発部が屈曲部より下になるθ=-30°において蒸発

部が液で満たされてしまい (Fig.10(d)), 蒸発部壁 温が 50℃以上に達した. 沸騰開始過熱度が高く, 加熱面で沸騰しなかったためである. また, 蒸発 が抑えられると, 系圧力の低下, 不凝縮性ガスの 膨張につながり, 凝縮部性能を低下させてしまう. 蒸発部にたまった液面での蒸発で熱輸送量がバ ランスすると, 加熱面での沸騰は期待できず壁温 低下は見込めない. 挿入板がない試験部 A でも全 ての姿勢で正常動作が確認された.

(c) 加熱量の影響 標準姿勢(θ = 0°)で加熱量 を 20W から 33W まで段階的に増大させる実験を 行ったが,試験部 A, C, D いずれの場合も,蒸発 部温度はほとんど変化せず正常に動作すること が確認された.

(d) 液の初期位置の影響 液の初期位置の影響 を調べるため装置全体を 130°回転させ,液を凝 縮部へ送り,その後,標準姿勢に戻し加熱 (20W) を開始した.挿入板のない試験部 A では屈曲部に 液プラグが形成されたため (Fig.12(a)),蒸発部へ の液の還流が不十分となり蒸発部の温度上昇を 招いた.一方,挿入板がある試験部 C, D では液 プラグが挿入板で崩壊し,液が挿入板を伝って蒸 発部へ還流したため (Fig.12(b)に試験部 C での可 視化結果を示す) 正常動作が得られた.

(a) Type A

Fig.12 Refrigerant behavior after return from inverted position. ($\theta = 0^{\circ}$, Heat input 20 W)

5. まとめと今後の方針

実用機器内流体挙動の可視化・計測とそれに基 づく流体挙動の機器性能への影響評価を目的と し、小型4サイクルガソリンエンジン、プレート 熱交換器,可変コンダクタンスヒートパイプを可 視化した.得られた結果を以下にまとめる.

(a) 中性子イメージインテンシファイアの導入 により,回転するエンジン内のオイル挙動を鮮明 に可視化することができた.

(b) プレート熱交換器内冷媒挙動の可視化結果 から、沸騰熱伝達性能への流動方向(垂直上昇/ 下降)の影響が存在する要因が明らかとされた. 垂直上昇流の方が、性能が高いという通常の円管 内流れの考えが、プレート熱交換器には通用しな いこと示すものであり、意義は大きい.

(c) 可変コンダクタンスヒートパイプ内冷媒挙 動の可視化結果から、ヒートパイプ動作不具合の 要因が明らかとされた.また、不具合の改善策と してヒートパイプ内に挿入された内挿板が設計 者の意図通りの効果を発揮していることが確認 された.

今後、同様の機器での研究を継続するとともに、 新たな機器への適用を検討している. 可視化計 測で得られた成果を,機器内二相流のモデリング (流動様式やボイド率特性)に反映させる.

6. 謝辞

実験用プレート熱交換器は日阪製作所より,可 変コンダクタンスヒートパイプは三菱電機より 提供されたことを記し,ここに感謝する.

7. 成果の公表

平成19年度から21年度の研究で得られた成果を もとに、学術雑誌、国際会議で公表された論文を以 下に示す.

H. Asano, T. Nakajima, N. Takenaka, "Visualization and Measurement of Hygroscopic Water Distribution in a Unit Cell of Silica-Gel Adsorber by Neutron Radiography", Journal of Chemical Engneering of Japan, 40(13), pp.1292-1297, (2007).

N. Takenaka, K. Sugimoto, H. Kawami, T. Yoshida, "Visualization of Two-Phase Flow Phenomena in a Self-Vibration Heat Pipe by Neutron Radiography", Proc. of the 18th International Symposium on Transport Phenomena, (2007).

浅野等,竹中信幸,"実用プレート熱交換器内空気-水二相流の流動特性に関する研究 -単流路内流動特 性と多流路分岐-",日本冷凍空調学会論文集,24(4), pp.87-98, (2007).

N. Takenaka, H. Asano, "Applications of Neutron Radiography to Two-Phase Flow in Industrial Machines", Multiphase Science and Technology, 19(3), pp.287-303, (2007).

T. Yoshida, H. Kawami, K. Sugimoto, N. Takenaka, Y. Saito, M. Matsubayashi, "Visualization of a Self-Vibration Heat Pipe by Neutron Radiography", Neutron Radiography (8), pp.509-516, (2008).

T. Baba, S. Harada, H. Asano, K. Sugimoto, N. Takenaka, K. Mochiki, "Nondestructive Inspection for Boiling Flow in Plate Heat Exchanger by Neutron Radiography", Nuclear Instruments and Methods in Physics Research-A, 605, pp.142-145, (2009).

K. Sugimoto, Y. Kamata, T. Yoshida, H. Asano, H. Murakawa, N. Takenaka, K. Mochiki, "Flow Visualization of Refrigerant in a Self-Vibration Heat Pipe by Neutron Radiography", Nuclear Instruments and Methods in Physics Research-A, 605, pp.200-203, (2009).

M. Nakamura, K. Sugimoto, H. Asano, H. Murakawa, N. Takenaka, K. Mochiki, "Visualization of Oil Behavior in a Small 4-cycle Engine by Electrical Motoring by Neutron Radiography", Nuclear Instruments and Methods in Physics Research-A, 605, pp.204-207, (2009).

K. Sugimoto, H. Murakawa, Y. Kamata, T. Yoshida, H. Asano, N. Takenaka, and K. Mochiki, "Flow visualization of refrigerant behaviors in a self-vibration heat pipe", Proc. of 7th Int. Conf. on Multiphase Flow, Tampa, USA., #3.3.4, (2010).

杉本勝美,村川英樹,吉田壮寿,鎌田洋平,浅野 等,竹中信幸,持木幸一,"自励振動型ヒートパ イプ内の熱流動現象に関する研究(中性子ラジオ グラフィによる冷媒挙動の可視化)",日本機械学 会論文集 (B編),76(766), pp.975-982(2010).

K. Sugimoto, H. Asano, H. Murakawa, N. Takenaka, T. Nagayasu and S. Ipposhi, "Evaluation of Thin Plate Insert Effect in a Variable Conductance Heat Pipe by Neutron Radiography", 9th World Conference on Neutron Radiography, Kwa-Maritane, South Africa, (2010).

2-5

中性子イメージ・インテンシファイアのための高性能撮像システムの開発 Development of High Performance Imaging System for Neutron Image Intensifier

持木幸一、和田泰明、岡崎道彦、大塚裕介

K. Mochiki, Y. Wada, M. Okazaki and Y. Otsuka

東京都市大学 Tokyo City University

1. はじめに

平成16年度から17年度にかけて2年間で行った中性子イメージ・インテンシファイア(II) の性能試験は極めて良好な結果が得られた。この 成果をふまえ、平成18年度と19年度の2年間に わたってTNRF2における動画撮像用の撮像系 の整備を行い、高速CT、ひいてはダイナミック CT用の撮像システムの開発を行った。そして、 引き続き平成20年度と21年度の2年間で、さら に高性能化を目指して種々の開発を行ったので報 告する。

2. 中性子IIを用いた中性子ダイナミックCT

実験で使用したダイナミック CT システムを図 1 に示す。被検体を通過した中性子線は中性子 I.I. で可視光に変換されカメラで撮影される。CT で は 180 度分の透過像が必要となるため、ターンテ ーブルで被検体を 180 度回転させる。中性子 I.I. は高い中性子検出効率を持ち、視野は 9,6,4.5 イ ンチ径で可変である。図 2 に中性子 I.I.の外観を 示す。

図 2:中性子 I.I.の外観

燃料電池のダイナミック CT では結露水の発生 条件や挙動を短い間隔で連続的に観察する必要が あるため、1 秒でターンテーブルを半回転させ、 なおかつ 180 枚以上の透過像を撮影する必要があ る。そこで、高速撮影カメラには Basler A-504K CMOS カメラを用いた。このカメラは 8bit 1280x1024 ピクセルの解像度を持ち、最大 500fps での撮影が可能である。さらに、このカメラから 転送されるデータ量は 200fps で約 240MB、 500fps で約 625MB にもなるため、高性能 PC で はデータ取得ボードとして National Instruments 社の NI PCI-1429 を用いた。このボ ードは最大で 680MB のデータを取得可能であり、 カメラからのデータ転送量を満たすものとなって

いる。

CT 処理の流れを図3に示す。CT 処理はノイズ 除去などを行う前処理と、断層像を得るための再 構成処理がある。メディアンフィルタはノイズを 除去するための一般的なデジタルフィルタである。 被検体に中性子をあてないで撮影を行なった際、 イメージセンサ固有の暗電流ノイズパターンが得 られる。これは露光時間に依存するため、透過像 を取得する際と同じ露光時間で暗電流ノイズパタ ーンを撮影し、透過像との差分補正処理を行う。 被検体を置かずに中性子を照射して撮影を行った 際に得られる画像には中性子 I.I.による感度ムラ が見られるため、これを補正するために行うのが シェーディング補正である。前処理後の ln 変換で は入射放射線強度/透過放射線強度の対数をとる ことで投影データを得る。得られた投影データに 対し CT 処理に特化したフィルタである Shepp-Logan フィルタ補正を行い、再構成画像に おけるボケの低減とエッジの強調を行う。フィル

タ補正を行ったデータと逆投影の際の補間係数を 掛け合わせ、それを 180℃分行って断層像を得る 処理が逆投影処理である。この一連の処理を被検 体の上から下まで行い積み重ねることで3次元像 を得ることが出来る。

高速撮影カメラを用いることでダイナミック C Tを行うが、カメラのフレームレートがあがるに つれ透過像1枚あたりの中性子量が少なくなり、 再構成した3次元像の画質も悪くなる。カメラの フレームレートを 200fps とした際の水挙動の評 価実験を行った。表1に2種類の高速 CMOS カ メラを用いた際の実験条件を示す。30万画素のC MOS カメラで燃料電池を撮影した実験では、少 しずつ水を入れながら透過像400枚を1セットと して連続で16セット取得した。また、空の状態 の燃料電池の透過像も1セット取得しておき、水 の入ったデータとの差分をとることで水のみの透 過像を作成する。16セットすべてにおいて差分の 透過像を作成して CT 再構成処理を行い 3 次元像 を形成した。そのうち3セットを3次元表示した ものを図 5 に示す。3 次元像作成には VGStudio MAX1.3を使用した。図4からも確認できるとお り、水部分の変化が観察できていることが確認で きる。しかし、この実験条件では解像度、撮影時 間など求められるダイナミック CT の要求を満た していない。

130 万画素の CMOS カメラで砂時計を撮影し た実験では、撮影時間が1秒のためダイナミック CT 本来の条件に近いものとなっている。この条 件で透過像データを200枚1セットとして30セ ット取得して内部の砂の量が変化していく様子が 確認できるかを検証した。A-504K はシャッター スピードを上げると横縞状のノイズが目立つよう になった。これは透過像1枚あたりの光量が減っ たためと考えられる。このノイズに対し新たな フィルターを施して砂時計の3次元像形成した。 図5にその3次元像における砂の量の変化を示す。

3. 立体透視システムの

ラジオグラフィで得られる透過像は2次元画像 になり、物体内部を構成する要素の相対的な前後 関係を示す奥行き方向の情報は消失してしまう。 奥行き方向の情報が必要な場合にはCT撮像法が あるが、多くの透過像を取得し、大量の計算を行 う必要がある。そこで、短時間に必要な透過像を 取得し、並列に再構成処理を実施する実時間ダイ ナミックCTシステムを開発中である。

人間が立体感を感じる生理的要因に、両眼視差、

輻輳、焦点調節、運動視差等がある。これらの要 因のうち奥行きを認識する最も重要な要因となっ ているのが両眼視差である。図6に示すように、 人間は左右の眼で異なった位置から対象物を観測 するため、その見え方には微妙な角度差が生じて いる。この角度差を視差と呼び、この視差の異な った画像を脳内で融合する機能によって物体を立 体として認識している。この認識機能を用いて立 体透視を行う。

装置は日本原子力研究開発機構の研究用原子炉 JRR-3Mにおいて、中性子イメージインテン シファイア(I.I.)を用いることを想定している。 X線を用いた立体視では、線源とカメラを2対使 用する例があるが、原子炉と高価な中性子 I.I.を 使用する場合は1対で行う必要がある。そこで、 図7に示すように、被検体を回転させることで視 差の異なる画像を取得するシステムを考案した。 このシステムでは、視差の異なる2つの映像信号 を得るために、画像処理装置を製作し、現在のカ メラからの出力画像と画像処理により遅延してき た回転角の異なる透過画像を右目用と左目用とし て作成した。これらの2つのビデオ信号は、ひと つのシルバースクリーン上に2台のプロジェクタ を用いて投射される。2台のプロジェクタには、 互いに透過軸が垂直となっている偏光板を設置し、 そしてスクリーン上に投射された映像を偏光メガ ネで見ることにより立体透視を行う。なお、回転 テーブルは PC で速度を制御することができ、ま た速度に応じて最適な視差を持った画像を選択す ることが出来る。

4.まとめ

ダイナミックCTは燃料電池内の水の可視化実 験に使用できるものが開発できた。また、立体透 視でも、動きのある現象の立体視が可能であるこ とが、実証できている。さらに、実用化を目指し、 研究を進めて行く予定である。

参考文献

 持木幸一、日塔光一 「中性子カラーイメージ インテンシファイア」 応用物理, Vol.75, No.11, pp.1349-1353 (2006).

 2) 岡崎道彦、和田泰明、持木幸一「中性子イメージ・インテンシファイアを用いた中性子CT」非破 壊検査協会 平成 19 年秋季大会講演概要集 pp327-330 (2007).

図1 CT用中性子透過像撮影システムの構成図

カメラ	撮像装置	解像度、bit 数	fps	撮影枚 数	撮像時間	視野	被検体
PRIX 社製 CMOS		640×480	- 200	400	2.0sec	9inch	燃料電池
SV642M	古州フロ	8bit					
Basler 社製 CMOS	1 中 1 主 于 1.1.	1280x1024		200	1.0sec	6inch	砂時計
A-504K		8bit					

表 1:ダイナミック CT 実験条件

図4 燃料電池のダイナミックCTの処理結果

図5 砂時計のダイナミックCTの処理結果

図6 立体視の原理

図7 立体透視システム

3. 即発ガンマ線分析

3. Prompt Gamma-ray Analyses

This is a blank page.

A Study on Improving the Linearity of Flash ADCs Using Neutron-capture Prompt Gamma Rays

K. Furutaka, A. Kimura

Nuclear Science and Engeneering Directorate, JAEA, Tokai, Ibaraki 319-1195

In neutron-capture reactions, a lot of gamma rays are emitted; in the capture reaction by a medium-heavy nuclide, literally thousands of gamma-ray peaks are observed in the obtained spectra. Therefore, to observe each of the gamma-ray peaks with good statistical acuracy, one needs to use a highperformance data acquisition (DAQ) system to process and store the data.

With the recent advances in Flash-ADC technology, one can build a high-speed DAQ system in which analog as well as digital signal processing components are integrated in a relatively small volume, and we are also developing one for multiple gamma-ray detection in neutron capture reactions¹⁻³⁾.

There is a wellknown drawback in Flash-ADC; its poor linearity⁴⁾. To determine energies of the gamma rays with sufficient accuracy and reliability, one has to improve the linearity; otherwise, one can not identify gamma ray peaks with confidence.

As the first step of the improvement, the authors have measured widths of each code in their DAQ system by digitizing signals which were produced with a digital pulse generator and which has a monotonically decreasing shape, and recording the number of appearances of all the codes (histograms). From the observed histograms of the codes, relative widths of the codes were deduced. In the histograms, many periodical spikes were observed differential nonlinearity (DNL) of which amounted to as large as -0.3 and widths are ~ 1 least significant bit (LSB). Moreover, large dips were also observed; their DNL is smaller (~ 0.1) but the widths are as large as 30 codes.

Integrated values of the observed code widths, which we call 'fractional codes', are thought to represent heights of the digitized signals more accurately than the original codes, and we can use them to deduce the heights of the input pulses. To see whether the pulse-height spectra obtained with the 'fractional codes' are imporved in linearity, we have measured gamma rays emitted in ¹⁴N(n,γ) reactions and compared to those obtained with the original codes. Detailed data analysis is now underway.

References

- A. Kimura, M. Koizumi, Y. Toh, A. Osa, M. Oshima, J. Goto, Y. Arai, M. Sagara, S. Iri, H. Kobayashi, Y. Suzuki, "High Density and High Cost Performance Data Acquisition System for Multiple Gamma-ray Detection", IEEE Nuclear Science Symposium Conference Record NSS'04, 2004, 3, 1489– 1493.
- 2) A. Kimura, Y. Toh, M. Koizumi, K. Furutaka, T. Kin, M. Oshima, "Improvement of a high speed and high density data acquisition system for multiple gamma-ray detection", IEEE Nuclear Science Symposium Conference Record NSS'07, 2007, 1, 474–477.
- 3) A. Kimura, Y. Toh, M. Koizumi, K. Furutaka, T. Kin, M. Oshima, "Performance of a High Speed and High Density Data Acquisition System for Multiple Gamma-ray Detection", IEEE Nuclear Science Symposium Conference Record NSS'08, 2008, 2107–2111.
- Glenn F. Knoll, "Radiation Detection and Measurement (3rd ed.)", John Wiley & Sons, Inc. (New York), 1999, pp. 652.
- 5) K. Furutaka, A. Kimura, M. Koizumi, Y. Toh, T. Kin, S. Nakamura, M. Oshima, "A Simple Method to Measure and Improve Linearity of Flash ADCs Used in Integrated VME ADC Modules", IEEE Nuclear Science Symposium Conference Record NSS'09, 2009, 2229–2233.

Development of a New Method to Identify Nuclear Levels on Neutron Capture Reactions

T. Kin, K. Hara, M. Oshima

Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 311-1195, Japan

Sum of partial cross sections of groundstate transitions (gamma rays emitted from excited states to a ground state) is considered to be an effective method for measurements of thermal neutron capture cross sections of minor actinides and long-lived fission $products^{(1,2)}$ and we have a plan to adopt it also to the measurements in the resonance region²). To apply this method, identification of ground state transitions is important. However, information of ground-state transitions is insufficient in many cases. We are, therefore, developing a new method to identify nuclear levels on neutron capture reactions with "STELLA," the spectrometer at a cold neutron beam line (C2-3-2).

There have been several methods for identifying nuclear levels after neutron capture reactions including the "two-step analysis"³). We are also developing a method to analyze data which can find candidates of levels in a short analysis time without complicated human manipulations. It is named "TELLA-2(Total Energy Leading nuclear Level Analysis in 2-dimensional matrix)". We measured prompt gamma rays from ${}^{35}\text{Cl}(n,\gamma){}^{36}\text{Cl}$ and the data was used to develop and test the method, TELLA-2.

The data obtained were now analyzing for the development of the method. Figure 1 shows one of the spectra obtained.

References

- K. Furutaka, et al. :"J. of Nucl. Sci. and Tech.", <u>41</u>, 11, pp. 1033 (2004).
- 2) M. Oshima, et al.: "Proc. of ND2007", pp. 603(2008).
- Valery A. Bondarenko, et al. :"FIZIKA B"<u>11</u>, 4, pp. 201

Figure 1: An example of the gamma-ray spectrum obtained through the experiment. Almost all peaks on this figure were emitted after neutron capture of 35 Cl.

原子炉: JRR-3 装置: MPGA(C2-3-2) 分野: 即発 線分析実験(その他)

Neutron Flux Correction for Standard Rice Sample Measurement in MPGA

Y. Toh, Y. Murakami¹, M. Oshima and M. Koizumi

Nuclear Science and Energy Directorate, Japan Atomic Energy Agency, Ibaraki 319-1195 ¹Research Institute of Nuclear Engineering, Fukui University, Fukui, Fukui 910-8507

It has been well known that cadmium exposure produces negative health effects on human beings. Since Japan is located in the volcano zone, the Cd concentration in soil tends to be high, and the area of high Cd concentration agricultural products is unevenly distributed. The issue of Cd level in all foods is of concerns, especially in rice, since rice is the most important food in Japan as well as the major crop in Japanese agriculture. $^{1)}$ The maximum level for Cd in rice is specified by Japanese law to be 1.0 ppm. The Codex adopted new standards on the maximum allowable levels of a number of food additives in order to protect the health of consumers(rice:0.4ppm).

Prompt gamma-ray analysis (PGA) is a high-sensitive, high-precision, multi-element, and non-destructive method. However, a quantification difficulty arises when the gamma-ray intensity from the trace element of interest is not sufficiently strong as compared with the intensities of background gamma rays from large amounts of other elements in a sample. By applying the multiple gamma-ray detection method to prompt gamma-ray analysis (PGA), the influence of background, hydrogen in particular, can be reduced. $^{2-5)}$

A neutron flux correction has a major influence on quantification quality and precision of trace elements. We want to study here the influence of a neutron flux correction in rice sample measurements with MPGA.

A standard rice sample which contains 0.548 ppm cadmium was separated into six aliquots. Table 1 shows quantification results for the aliquots. The result which do not take into account neutron flux is higher than the recommended value of standard rice sample. In contrast, the result obtained by neutron flux correction agrees well with the recommended value.

References

- FAOSTAT database: 2005. Food and Agriculture Organization of the United Nations (FAO) Statistical Databases.
- Y. Toh, et al.: "Appl. Rad. Isotepes", <u>64</u>, pp. 751-754 (2006).
- R.P. Gardner, et al. :"Appl. Rad. Isotepes", <u>53</u>, pp. 515-526 (2000).
- P.P. Ember, et al. :"Appl. Rad. Isotepes", <u>56</u>, pp. 535-541 (2002).
- M. Oshima, et al.:"J. Radioanal. Nucl. Chem.", <u>271</u>, pp. 317-319 (2007).

No.	weight	Non neutron flux corrected	Neutron flux corrected
	(mg)	(ppm)	(ppm)
1	289.9	0.80(20)	0.55(12)
2	262.1	0.74(18)	0.48(11)
3	244.3	0.83(19)	0.60(13)
4	102.0	0.92(28)	0.45(19)
5	116.3	0.63(27)	0.53(18)
6	103.0	0.71(28)	0.78(22)
	Average	0.77(9)	0.55(6)

Table 1: Results for \sim 290mg aliquots of the standard rice sample

原子炉: JRR-3 装置: MPGA(C2-3-2) 分野: 即発 線分析実験(その他)

Multiple prompt γ -ray measurements of the ${}^{74}\text{Ge}(\mathbf{n},\gamma){}^{75}\text{Ge}$ reaction

K.Y. Hara, T. Kin and M. Oshima

Nuclear Science and Engineering Directorate, JAEA, Tokai, Ibaraki 319-1195

We studied a decay scheme of ⁷⁵Ge in the ⁷⁴Ge(n, γ)⁷⁵Ge reaction. The information of level structures and γ -ray transitions are important for accurate determination of the neutron capture cross section of ⁷⁴Ge with the prompt γ -ray detection method, when the cross section is derived by summing all the intensities of ground-state or primary transitions ^{1,2}. However, the γ -ray transition from/to excited state of ⁷⁵Ge above 2 MeV is unknown. The γ -ray transitions in the energy of 3-4 MeV have not been assigned to the decay scheme, although these transitions were previously reported ³.

The experiments were performed at the C2-3-2 beam line for Multiple Prompt Gamma rays Analysis (MPGA). A target was irradiated by the cold neutron beam with a typical intensity of $\sim 10^7$ n/s/cm². For the ⁷⁴Ge target, a germanium oxide powder enriched in 74 Ge to 99% was used. The multiple prompt γ -rays emitted from the ${}^{74}\text{Ge}(n,\gamma){}^{75}\text{Ge}$ reaction were measured by using a gammaray spectrometer (STELLA) which consists of eight clover-type Ge detectors and BGO Compton-suppressors $^{4)}$. The coincident event data from these detectors were acquired with a data acquisition system based on the advanced digital processing technique.

All energy spectra for a crystal were

summed into an energy spectrum. In addition, the energies of all γ rays which coincidentally detected with the Ge detectors were summed to derive the total energy (E_{tot}) . The $E_{\rm tot}$ should be nearly equal to the neutron separation energy of 75 Ge ($S_n = 6505$ keV), if all prompt γ -rays in a cascade from the compound state of 75 Ge were detected. To discriminate the background, the event data adapted to this condition were used in the present analysis, where the gate region for $E_{\rm tot}$ was from 6505-15 keV to 6505+15 keV. The gated gamma energy spectrum is shown in Fig. 1. Many unknown γ -ray transitions, in addition to the known one, were seen in the energy spectrum.

The γ - γ coincidence analysis was applied to the present data to identify the γ -ray transitions and the levels of ⁷⁵Ge. As a results, the candidates of new γ -ray transitions and new levels were found in the ⁷⁴Ge(n, γ)⁷⁵Ge reaction.

References

- K. Furutaka, H. Harada and S. Raman : "J. Nucl. Sci. and Tech.", <u>41</u>, 1033 (2004).
- M. Oshima, J. Hori, H. Harada, et al. :"Proc. Int. Conf. ND2007", pp. 603-606 (2008).
- 3) ENSDF, http://www.nndc.bnl.gov/ensdf/
- Y. Toh, M. Oshima, K. Furutaka, et al. : "J. Radioanal. Nucl. Chem.", <u>278</u>, 703 (2008).

Figure 1: Gamma rays energy spectrum. The solid arrows indicate the prominent unknown peaks. The dashed arrow indicates the position of S_n .

原子炉: JRR-3 装置: MPGA(C2-3-2) 分野: 即発 線分析実験(その他)

JAEA-Review 2013-040

固体環境試料および地球化学的試料の即発ガンマ線分析(V) Neutron-induced prompt gamma-ray analysis of solid environmental samples and geochemical samples (V)

松尾基之・久野章仁・小豆川勝見・長谷川篤¹ 諸町大地・高橋麻子・山ノ井俊²・原直樹・藤井政光

東京大学大学院総合文化研究科広域科学専攻 1東京海洋大学大学院海洋科学技術研究科海洋保全学専攻 2東京大学大学院理学系研究科化学専攻

1. はじめに

種々の固体環境試料について、その中に含まれ る元素の量を定量し、その分布を明らかにするこ とは、試料自体の形成過程を知る上でも、試料の 置かれた環境を理解する上でも重要な課題と考 えられる。中性子誘起即発ッ線分析法(PGA)は、 通常の機器中性子放射化分析法(INAA)と同様に、 多元素同時定量分析が可能なため、多くの元素の 分布を総合的に判断するのに適した分析法と言 える。さらにPGAは、INAAでは分析が困難な H, B, S, Si 等の軽元素やCd 等の有害元素の定量が 可能である、試料の誘導放射能が低く同分析法で 使用した試料を他の分析法で再使用することが 可能である、といった特長を持つ優れた分析法で ある。本研究では、同法を用いることにより、次 に掲げる試料について種々の環境化学的、地球化 学的な検討を行ったので、それぞれの試料ごとに 研究内容およびその結果を報告する。

2. 谷津干潟および芝浦運河底質中の元素分布と 化学状態から見た環境評価

【序】干潟は、きれいな水を産み出す天然の浄化 フィルターの役割を果たしている点で注目を集 めている。干潟における浄化作用のメカニズムを 解明することは環境問題における重要な課題の

研究施設と装置名 JRR-3M、即発y線分析装置 一つである。本研究では、干潟底質中の化学的な 浄化作用に注目し、干潟底質中における物質循環 や化学変化を明らかにしたいと考えた。干潟の浄 化作用を検討する上で、一般に浄化能力が低いと 考えられる運河を干潟の比較対象とし、2 地点の 違いを明らかにすることを目的とした。研究対象 として、干潟に関しては千葉県習志野市に位置す る谷津干潟を選んだ。また干潟の比較対象として は、東京都港区に位置する芝浦運河を選んだ。両 者は互いに海水と淡水の混ざり合う汽水域であ り、かつ、地質の時代および岩石区分も同じであ るという点から、両地点の比較は浄化作用の違い を考える上で重要な知見を与えると考えられる。

研究方法として、谷津干潟および芝浦運河で実際に底質を採取し、底質中に含まれる約 30 元素の鉛直分布を中性子誘起即発 γ 線分析(PGA)および機器中性子放射化分析(INAA)により解析し、元素挙動および元素間の相互作用について考察を行った。また、底質中では嫌気性の細菌である硫酸還元菌の活動により硫化水素が発生し、底質中の鉄イオンと反応し硫化鉄や Pyrite(FeS2)を生成することから、メスバウアー分光法により Fe の化学状態を測定した。Fe の化学状態を調べることは、Fe を含んでいる物質の置かれていた環境を推定する上で、大変重要であると考えられる。

研究分野 環境化学、地球化学、分析化学

【実験】試料として、谷津干潟および芝浦運河の 底質を垂直方向に採取した。採取には内径 6cmの アクリルパイプを用い、得られた約 50cm のコア を現地で 3cm ごとに切り分け、酸化を防ぐため N2中に封入した。得られた試料はN2を用いた加 圧濾過により間隙水を取り除き、メスバウアー測 定に用いた。また、その後、凍結乾燥を施し、め のう乳鉢で粉砕し均一にした。その中から約 200mgを精秤し、錠剤成型器を用いて直径 10mm、 厚さ約 1mm のペレットに成型した。これを中性 子ビームサイズである 20mm 四方以内に収まる ように、厚さ 12µm の FEP フィルムに封入し、 テフロン製の専用ホルダーに固定したうえで、日 本原子力研究開発機構 JRR-3M の中性子ビーム ガイドに設置し、He 雰囲気中で 3600 秒間即発γ 線を測定した。中性子束の変動を補正するために、 24 時間に一回、一定の Ti 板(Ti flux monitor)を測 定して得られる 342keV と 1381keV ピークの計 数率の平均値で割り、比較標準試料について報告 されている Ti flux monitor の計数率で規格化し た分析感度を用いて各元素の含有量を計算した。 INAA 法に関しては、日本原子力研究開発機構の JRR-4 にて照射を行い、大学開放研のγ線スペク ロトメーターにて測定を行った。

【結果及び考察】PGA と INAA 法により、どのコ ア試料についても約 30 元素の鉛直分布を得るこ とができた。得られた元素の鉛直分布のうち浄化 作用に関連すると考えられる特徴的な6元素の鉛 直分布を図1に示す。

コア試料中の元素の濃度分析により Al, Fe, Ti は深さ方向に変化がなかった。Al は最も風化反応 において移動しにくい元素であると考えられて いるため、この結果はそれを支持するものである。 S, H, Cd, Cr は中層部で極大を示した。S は底質の 還元状態により、硫酸イオンが硫化物イオンなど となって他の元素と結びつき固定されたものと 考えられる。Cd はその硫化物イオンなどと反応し て固相に取り込まれたものと考えられる。実際、 底質中のS と似た挙動を示している部分がみられ た。谷津干潟では検出限界以下(<0.5ppm)であるの に対し、芝浦運河では日本土壌に含まれる濃度の 平均値である 0.44ppm の 10 倍程度の濃度で検出 された。Cr は谷津干潟では深さ方向に大きな変化 はなく、その濃度は 50~60ppm であるが芝浦運河 では中層部で極大を示し、高いところでは谷津干 潟の4倍程度であった。Cr の日本土壌に含まれる 濃度の平均値は 50ppm であり、谷津干潟では概ね 平均程度であると言える。芝浦運河では汚染が進 んでいることを意味し、谷津干潟は化学的に汚染 がされていないことがわかった。Cd, Cr といった 元素は人為起源である可能性が高く、底質中に堆 積されていることがわかった。

状態分析において、メスバウアー分光法を用いることで Fe の化学状態別の鉛直分布が明らかになった。どのコア試料も Pyrite(FeS₂)が中層部付近で極大を示し、それに対して相補的になるように

主としてFe³⁺ h.s.さらにFe²⁺ h.s.が変動しているこ とがわかった。これらの成分が溶出したものと、 海水や生活排水起源の硫酸イオンが還元された 硫化物イオンから Pyrite が生成され、底質中に固 定されたものと考えられる。

総じて、谷津干潟のように汚染が進んでいない 場所では、Fe などが硫化物イオンと反応して、Fe の硫化物である Pyrite などが生成される。一方、 芝浦運河のように汚染されている場所では、Cd のような硫化物を作りやすい金属が先に硫化物 イオンと反応して、底質中に固定され、硫化物イ オンが余剰な時には Fe などと反応する。本研究 により、運河のような浄化作用のないと考えられ てきた場所においても浄化作用が働いている可 能性があることが明らかになった。

3.干潟底質の酸化還元電位と底質中の元素の挙 動

【序】東京湾は多くの都市河川が流れ込み、また 閉鎖性の強い内湾域であるという地形的特徴か ら、汚染されることが多かった。現在でも夏季に は貧酸素水塊の発生が報告され、魚貝類への深刻 な影響が指摘される等多くの環境問題を抱えて おり、水質や生物に着目した研究が非常に盛んで ある。しかし、底質から得られる情報を環境の変 遷の履歴として、環境を評価するという立場でな されている研究は少ない。そこで本研究では、東 京湾に多く存在し独特の生態系を持つと言われ る干潟、そして比較用として、小網代湾の干潟 底質を鉛直方向に採取し分析することで、水質 の還元的環境と底質中の元素の挙動との関係 を明らかにすることを目的とした。

【実験】多摩川河ロ干潟、小網代湾干潟それぞれ において、コアサンプラーで鉛直方向に採取した 底質を深さ方向に3 cm 毎にカットし、加圧ろ過 を行った後、フリーズドライした。得られた乾燥 試料について、PGA と INAA 法を用いて多元素の 定量分析を行った。定量値はデータの類似度をユ ークリッド距離の大小で表すクラスター分析と 多次元尺度構成法(MDS)の2つの統計的手法を用 いて、深度別、元素別に分類を行い、酸化還元電 位等との相関について考察した。

【結果及び考察】多摩川河口干潟底質の酸化還元 電位(ORP)は、表層から深さ約 20cm までは正で、 20cm 以深では負の値を取っていた。またこの ORP の変化を、元素分析値より得られた多摩川河 ロ干潟底質のクラスター分析の結果と組み合わ せて考えると、ORP が正の試料と負の試料で、ユ ークリッド距離が大きくなるという傾向が見ら れた(図2)。また、図中において下側に位置する3 試料について、その他の試料に比べ、有意にユー クリッド距離が離れていた。これらの3試料につ いては、人為起源が疑われる Cr や Zn といった元 素の濃度が、他の試料と比べて高くなっていた。 また同じ試料を MDS によって解析した結果(図 3)においては、ほとんどの点が2軸上に乗ってい た。この2軸はクラスター分析で差が見られた ORP 変化と人為起源に対応すると考えられ、これ らが MDS を併用することで、より明確に評価で

図 2. 多摩川河口干潟底質の深度別デンドログラム (ORP が負の試料を丸で囲んで示した)

きた。ORP 変化の小さい小網代湾干潟底質ではこの傾向は見られなかった。

以上の結果から、干潟という複雑な系について も、要素を絞ることで個々の要素の影響を評価し 得ることが分かった。また多摩川河ロ干潟におい ては、元素の挙動が ORP 変化によって大きな影 響を受けていることが分かった。

4. 成果の公表

学術誌、紀要等

- Estimation of the sources of pelagic sediments from the South Pacific Ocean to the Antarctic Ocean, K. Shozugawa, A. Kuno, Y. Sano and M. Matsuo, J. Radioanal. Nucl. Chem., Articles, <u>278</u>, 331-335 (2008)
- Influence of reclamation on the concentrations and chemical states of elements in tideland sediment, D. Moromachi, A. Kuno and M. Matsuo, J. Radioanal. Nucl. Chem., Articles, <u>278</u>, 495-498 (2008)
- 南太平洋における遠洋性堆積物をプローブとした堆積当時の気候変動の検討、小豆川勝見・金井豊・佐野有司・松尾基之、「放射化分析法利用に関する国際化」専門研究会報告書、京都大学原子炉実験所、58-69 (2008)
- 4. Elemental analysis and acid neutralization capacity of soil at the area where the acid rain damage is observed, A. Takahashi, A. Kuno and M. Matsuo, 「放射化分析法利用に関する国際化」専門研究 会報告書、京都大学原子炉実験所、70-78 (2008)
- 5. 谷津干潟及び芝浦運河の底質中における水質 浄化作用の解析、長谷川篤・田中美穂・久野章 仁・松尾基之,分析化学,58,87-94 (2009)
- 6. 谷津干潟堆積物中の浄化機能における間隙水の役割に関する研究、長谷川篤・田中美穂・隈 倉真・久野章仁・松尾基之,分析化学,58,327-332 (2009)
- ⁵⁷Fe Mössbauer study of specific iron species in the Antarctic Ocean sediments, K. Shozugawa, A. Kuno, H. Miura and M. Matsuo, J. Nucl. Radiochem. Sci., <u>10</u>, 13-17 (2009)

- 東京湾感潮域底質における酸化還元電位と元素の挙動に関する研究、原直樹・小豆川勝見・ 松尾基之、「京大原子炉の再開と放射化分析」専 門研究会報告書、京都大学原子炉実験所、53-59 (2009)
- 9. 雪氷中の粒子状物質を用いた大気環境評価に 関する研究、藤井政光・小豆川勝見・松尾基之、 「京大炉(KUR)における総合的微量元素計測シ ステムの構築と応用」専門研究会報告書、京都 大学原子炉実験所、印刷中

学位論文

- 3 摩川とその支流における河川環境の評価 ~人為起源物質の影響を探る~、原直樹、東京 大学教養学部広域科学科 卒業論文 I (2007 年 11月)
- 雪氷中の粒子状物質の元素分析による大気汚染物質の挙動に関する研究、藤井政光、東京大学教養学部広域科学科 卒業論文 I (2008 年 11 月)
- 干潟底質の元素分布に及ぼす周辺部埋立ての 影響に関する研究、諸町大地、東京大学大学院 総合文化研究科広域科学専攻 修士論文 (2009 年1月)
- 13.酸性雨被害が見られる地域における土壌の元 素分析と酸中和能との関連性、高橋麻子、東京 大学大学院総合文化研究科広域科学専攻 修士 論文 (2009 年1月)
- 14. 交換性陽イオンによる土壌の酸中和能の解析、
 山ノ井俊、東京大学大学院理学系研究科化学専 攻 修士論文 (2009年2月)
- 15. 谷津干潟および芝浦運河の底質・間隙水中に おける浄化機能に関する研究、長谷川篤、東京 海洋大学大学院海洋科学技術研究科海洋保全学 専攻 修士論文 (2009 年 3 月)
- 16. 還元的環境下における底質中の元素の挙動と 化学状態に関する研究、原直樹、東京大学大学 院総合文化研究科広域科学専攻 修士論文 (2010年1月)

学会発表等

17. 機器中性子放射化分析法・即発ガンマ線分析

法による環境試料・地球化学的試料の多元素分析、松尾基之・小豆川勝見・諸町大地、原子力 機構施設利用一般共同研究成果報告会 (2008 年 8月)

- 18. 干潟および運河の底質・間隙水中の元素分析 による環境評価、長谷川篤・田中美穂・松尾基 之、日本分析化学会第57年会(2008年9月)
- 19. 干潟底質中の元素垂直分布への主成分分析の 適応による環境変動の評価法の検討、諸町大 地・松尾基之、日本地球化学会年会 (2008 年 9 月)
- 20. 土壌の酸中和能へ影響を与える交換性 Ca イ オンの化学形態、山ノ井俊・小豆川勝見・松尾 基之、日本地球化学会年会 (2008 年 9 月)
- 21. 酸性雨被害が見られる地域における土壌の元 素分布と酸中和能との関連性、高橋麻子・小豆 川勝見・松尾基之、日本地球化学会年会 (2008 年9月)
- 22. 硫酸還元と栄養塩から見た都市河川の環境評価、原直樹・小豆川勝見・松尾基之、日本地球化学会年会(2008年9月)
- 23. 過剰³³⁰Thにより年代決定された遠洋性海洋堆 積物表層における Aragonite-Calcite 相転移、小豆 川勝見・金井 豊・佐野有司・松尾基之、第52 回放射化学討論会 (2008 日本放射化学会年会) (2008 年9月)
- 24. 放射化分析法を用いた干潟の変遷と底質中の 元素垂直分布の関連性の検討、諸町大地・松尾 基之、第52回放射化学討論会 (2008日本放射化 学会年会)(2008年9月)
- 25. 酸中和能の観点から見た土壌における Ca の 吸着形態の分析、山ノ井俊・小豆川勝見・松尾 基之、第 52 回放射化学討論会 (2008 日本放射化 学会年会)(2008 年 9 月)
- 26. 底質・間隙水中の鉄の挙動による干潟の浄化 機能に関する研究、長谷川篤・田中美穂・松尾 基之、第5回茨城地区分析技術交流会 (2008 年 10月)
- 27. Monitoring of environmental contamination and environmental changes, M. Matsuo, FNCA 2008

Workshop on Research Reactor Utilization, Vietnam, (October 2008)

- 28. 干潟底質における酸化還元電位と元素の挙動 に関する研究、原直樹・小豆川勝見・松尾基之、 日本地球化学会年会 (2009 年 9 月)
- 29. 還元的環境下における東京湾底質に含まれる 元素の化学状態、原直樹・小豆川勝見・松尾基 之、第53回放射化学討論会 (2009日本放射化学 会年会)(2009年9月)
- 30. 雪氷中のダスト粒子に含まれる人為起源物質 比の推定、小豆川勝見・松尾基之・大島真澄・ 藤暢輔・木村敦・小泉光生、第53回放射化学討 論会 (2009日本放射化学会年会)(2009年9月)
- Neutron activation analysis of marine sediment samples for environmental monitoring, M. Matsuo, FNCA 2009 Workshop on Research Reactor Utilization, Hachinohe, (September 2009)
- 32. Application of instrumental neutron activation analysis to solid environmental and geochemical samples for environmental monitoring, M. Matsuo, Invited talk in Bangladesh Atomic Energy Commission, Bangladesh, (March 2010)
- 33. 堆積物を用いた過去 30 年間の東京湾幕張沖 における貧酸素水塊の評価、小豆川勝見・金井 豊・松尾基之、日本地球化学会年会 (2010 年 9 月)
- 34. 機器中性子放射化分析法と多重即発ガンマ線 分析法による環境試料の多元素分析、松尾基 之・小豆川勝見・藤暢輔・村上幸弘・古高和禎・ 木村敦・大島真澄・小泉光生、第54回放射化学 討論会 (2010日本放射化学会年会)(2010年9月)
- 35. 雪氷中の粒子状物質を用いた大気環境に対す る人為的影響の評価、藤井政光・小豆川勝見・松 尾基之・藤暢輔・村上幸弘・古高和禎・木村敦・ 大島真澄・小泉光生、第 54 回放射化学討論会 (2010日本放射化学会年会)(2010年9月)
- 36. Neutron activation analysis of marine sediment samples for environmental monitoring, M. Matsuo, FNCA 2010 Workshop on Research Reactor Utilization, China, (September 2010)

3-6

隕石試料の即発ガンマ線分析

Prompt gamma-ray analysis of meteorite samples 首都大学東京大学院理工学研究科 海老原充

1. はじめに

本研究代表者は、日本原子力研究開発機構(旧・ 日本原子力研究所)の研究用原子炉JRR-3が改造さ れ、中性子ビームを利用した即発γ線分析(PGA) が実施可能となって以来、主に隕石試料を分析対象 として即発γ線分析を実施してきた。これまでの研 究を通して、PGAは隕石の全岩組成、特に、主成分 元素組成を求める手段として、大変優れていること を実証した。特に優れた点として、(i)隕石を構成す る主成分元素をほぼ全元素定量することができるこ と、(ii) 全岩試料に対して非破壊分析できること、 (iii) 中性子照射による誘導放射能レベルが非常に低 く、照射試料を再利用できること、の3点を上げる ことが出来る。

平成19年度から21年度の間、標記課題で原子力 機構施設を利用した共同研究を行った。上で述べた とおり、PGAを用いることによって隕石試料の元素 組成をほぼすべての主成分元素に対して求めること ができる。また、PGAで利用する中性子束は通常の 炉内照射で行う機器中性子放射化分析(INAA)に比 べて桁違いに低いことから、PGAで利用した試料を 再度 INAA に用いることは可能であり、その結果、 微量元素を効率よく分析することができる。その意 味で、PGAと INAA を相補的に利用することにより、 限られた量の隕石試料から最大限の元素組成に対す る情報を引き出すことが可能になる。試料によって は PGA 後の試料を誘導結合プラズマ質量分析法に 利用した例もある。

隕石の中で最もしばしば分析されるコンドライ ト隕石の主成分元素としては、Si、Mg、Fe、Ca、 Al、Ti、Sが挙げられる。これらの元素のうち、Mg と Naについては、INAAの値との間でしばしば不一 致が見られることが、これまでの経験で知られてい た。本報告では、PGAを用いてコンドライト隕石を 分析する際のこれら2元素の不一致について詳細に 検討した結果を報告する。 2.1 試料

隕石試料として、分析データの多く報告されてい る Allende 隕石試料と、標準岩石試料として JB-1(玄 武岩)を用いた。ともに試料量約 250 mg を秤量し、 FEP フィルムの袋に封入した。これら2 試料は同一 試料を用いてこれまで 10 回以上繰り返し分析して きたもので、その値に基づいてデータの信頼性を考 察した。

Na と Mg の定量の為に、それぞれ Na₂SO₄ と Mg 金属試薬を用いた。

更に、南極隕石試料 5 試料を PGA 及び INAA で分 析し、両分析法によって得られた Na と Mg の定量 値を比較した。これらの試料はいずれも月隕石試料 で、国立極地研究所から貸与されたもので、そのう ち3 試料は同一隕石から分取した試料で、隕石中で の採取一がそれぞれ異なるものである。

2.2 即発ガンマ線分析

即発ガンマ線分析は JRR-3 の熱中性子ガイドビー ムを用いて行った。中性子の照射時間は 2~3 時間で、 中性子照射によって放出される即発ガンマ線をゲル マニウム半導体検出器で測定した。高エネルギーガ ンマ線によるコンプトン散乱の妨害を軽減するため、 酸化ビスマス・ゲルマニウム検出器を併用した。

2. 3 機器中性子放射化分析

PGA のデータと比較する目的で、同一試料を機器 中性子放射化分析 (INAA) で分析を行った。実験は JRR-3 の気送管 Pn-3 を用いて行った。各試料 35~60 mg を洗浄したポリエチレン袋に二重に封入し、10 秒中性子照射しのち、約 10~15 分冷却後、γ線測定 を 300 秒行った。月隕石中の Na, Mg を定量するた めに、JB-1 を比較標準試料として用いた。

結果と考察

3. 1 PGA による JB-1 と Allende の Na と Mg 定 量値

JB-1を10回、Allende 隕石を11回、3年員渡って

研究施設: JRR-3、装置: PGA、研究分野: 宇宙化学、分析化学

2. 実験

繰り返して測定した結果を表1に示す。Naで8つ、 Mgで10の異なる即発ガンマ線に対して定量値をそ れぞれ計算し、平均値と標準偏差を求めた。また、 推奨値に対する相対値も示した。Naの472.202 keV の即発ガンマ線はホウ素由来のビークと重なる。図 1は450 keVから500 keVの範囲のガンマ線スペク トルを JB-1 と Allende で比較したものである。JB-1 中の Na と B は Allende 中の含有量より高く、両者の ピークは完全に重なる。この 472 keV の Na ピーを 用いて定量する際には、Bのビークが 477.598 keV を中心に対称であると仮定し、重なりを補正した。 表1で明らかなように、JB-1に対しては2754 keV と 3587 keV の二本のガンマ線による値を除けば、い ずれも推奨値と良い一致が認められる。これに対し て、Allende 隕石の値はどのエネルギーを用いても推 奨値との良い一致は認められない。唯一 472 keV の ピークのみが妥当な値を与える。図1(b)で分かると おり、Allende 隕石中の B 含有量は JB-1 の値に比べ ると1 桁低いので、Na のピークが明瞭に認められる。 Naの低エネルギー側には Niのピークが現れるが、 Naのピークとは分離できるので、妨害しない。

PGA では Mg は岩石中の他の主要元素に比べて感 度が低い。JB-1 と Allende 中の Mg 含有量を比較す ると、Na とは逆に Allende の含有量は JB-1 の値に比 べて数倍高い。このことは、表1で Allende の定量 値は文献値に対して概ね妥当であるのに対して、 JB-1の定量値はほぼすべてのピークで推奨値と一致 しない。図2はJB-1とAllendeに対する、2820 keV から 2840 keV のエネルギー領域のガンマ線スペク トルである。この領域には 2828 keV の Mg の即発ガ ンマ線が現れる。このピークを用いて定量した値は Allende では妥当であるが、JB-1 では低い値が得ら れた。図で明かなように、JB-1 ではNによるビーク と重なり、また、Mg のピークが小さいこともあり、 正確にピーク領域、バックグラウンド領域を確定す ることは容易でない。Allende 隕石と JB-1 の両方で の定量値を推奨値と比較すると、岩石中の Mg の定 量には 2828 keV を用いるのが妥当だと結論される。 3.2 月隕石の Mg と Na の定量値: PGA と INAA の比較

実験の項でも述べたとおり、月隕石をPGAと INAAの両方で分析した。INAAで用いた試料はPGA で測定した試料で、メノウ乳鉢中で粉砕して均一に した後、その一部を用いた。定量値を表2に示す。 PGAの値は、472keVでNaを、2828keVでMgを定 量したものである。表2で明らかなように、Na、 Mgともに、INAAで高感度に定量出来る。図3は5 の隕石に対するNaとMgの、PGAとINAAによる 定量値の比較を示したものである。試料によっては 大きな不確定さが伴うものの、その範囲内ではNa, Mgともに両分析法で妥当な一致が認められる。こ のことは、この隕石の持つNa、Mgの濃度範囲では、 即発ガンマ線の選択と、Na定量の際の補正法が妥当 であることを示すものと理解される。

3. 3 岩石中の Na と Mg の定量に対する PGA と INAA の分析能力

表3はPGAとINAAによるNaとMgの検出限界 を比較したものである。ここで、検出限界値の計算 には月隕石試料を測定した時のスペクトルを用い、 対応するピーク(Naでは472 keV、Mgでは2828 keV) のおけるバックグラウンド計数の3σを検出限界値 とした。表3の検出限界値は試料中の元素濃度で示 されている。明らかに、INAAの検出限界はPGAの 値に比べて、Na、Mgともに低い。今回測定した月 隕石のMg含有量はJB-1と同程度であるが、INAA による定量値との一致度は十分妥当なものである。

これまでの経験で、PGA と INAA は固体岩石試料 (隕石を含む)の元素分析に対して相補的に利用出 来ることが実感として強く認識してきた。特に PGA は一連の元素分析を行うあたって、一番先に行うべ き分析法と言える。これは、(i) 試料を物理的にも化 学的にも破壊せずに分析できること、(ii) 岩石を構 成する主要元素をすべて分析できること、(iii) 中性 子束が INAA で用いる値に比べて桁違いに低く、 PGA で分析した試料を再利用できること、等の理由 からである。このことは、惑星探査で持ち帰った試 料の初期分析には PGA の非常に効果的に利用出来 ることを示すものである。図4は惑星探査によって 回収された試料を分析するための分析スキームを示 したものである。IPAA は機器光量子放射化分析、

研究施設: JRR-3、装置: PGA、研究分野: 宇宙化学、分析化学

RPAA は放射化学的光量子放射化分析を示す。この スキーム拠れば、分析できる試料サイズによるが、30 程度の元素の定量値を求めることは容易である。

研究成果 (発表論文)

(共同研究に期間(2007~2009)に報告した PGA を 用いて得られた研究成果)

 S. Yamazaki, Y. Oura and M. Ebihara (2007)
 Determination of hydrogen in geological rock samples by neutron-induced prompt gamma-ray analysis. J.
 Radioanal. Nucl. Chem. 272, 363-369.

2. T. Nakamoto, Y. Oura and M. Ebihara (2007) Comparative study of activiton analyses for the determination of trace halogens in geological and cosmochemical samples. Anal. Sc. 23, 1113-1119. Y. Karouji and M. Ebihara (2008) Reliability of prompt gamma-ray analysis for the determination of Na and Mg in rock samples. Anal. Sci. 24, 659-663.
 Y. Yamaguchi, A. A. Barrat, R. C. Greenwood, N. Shirai, C. Okamato, T. Setoyanagi, M. Ebihara, I. A. Franchi and M. Bohn (2009) Crustal partial metting on Vesta: Evidence from highly metamorphosed eucrites. Geochim. Cosmochim. Acta 73, 7162-7182.
 N. Shirai and M. Ebihara (2009) Chemical characteristics of lherzolitic shergottites Yamato 000097 and the magmatism on Mars inferred from chemical compositions of shergottites. Polar Science 3, 117-133

Table 1 Average values of Na and Mg for their major prompt gamma-rays for JB-1 and Allende

	Prompt gamma- ray ^b /keV	Cross – section ^b /b	JB-1 (<i>n</i> = 10)		Allende $(n = 11)$	
			Average, %	Relative to recom. value	Average, %	Relative to recom. value
Na			(2.05)°		$(0.341 \pm 0.007)^{d}$	
	90.9920	0.235	2.18 ± 0.19	1.06 ± 0.09	0.26 ± 0.16	0.76 ± 0.47
	472.202	0.478	2.22 ± 0.16	1.08 ± 0.08	0.40 ± 0.05	1.2 ± 0.2
	869.210	0.1080	2.06 ± 0.54	1.00 ± 0.26	0.80 ± 0.16	2.3 ± 0.5
	2025.139	0.0341	2.23 ± 1.56	1.09 ± 0.76	e	
	2754.13	0.530	2.71 ± 0.42	1.32 ± 0.21	1.4 ± 0.3	4.1 ± 0.8
	3587.460	0.0596	4.65 ± 0.70	2.27 ± 0.34	1.6 ± 0.7	4.6 ± 2.0
	3981.450	0.0677	2.16 ± 0.18	1.05 ± 0.09	0.65 ± 0.20	1.9 ± 0.6
	6395.450	0.1000	2.10 ± 0.16	1.02 ± 0.08		
Mg			(4.65)°		$(14.8 \pm 0.1)^{d}$	
-	389.670	0.00584	4.9 ± 1.1	1.1 ± 0.2	20.5 ± 2.2	1.38 ± 0.15
	585.00	0.0314	9.8 ± 1.0	2.1 ± 0.2	18.2 ± 1.9	1.23 ± 0.13
	974.66	0.00663	15 ± 6	3.3 ± 1.4	15.6 ± 2.2	1.06 ± 0.15
	1129.575	0.00891	5.9 ± 1.0	1.3 ± 0.2	15.8 ± 1.5	1.07 ± 0.10
	1808.668	0.0180	6.6 ± 1.0	1.4 ± 0.2	18.0 ± 1.5	1.22 ± 0.10
	2438.54	0.00473			14.2 ± 5.2	0.961 ± 0.351
	2828.172	0.0240	3.5 ± 0.9	0.74 ± 0.20	14.7 ± 1.2	0.991 ± 0.083
	3301.41	0.00620	9.4 ± 5.2	2.0 ± 1.1	16.7 ± 4.1	1.13 ± 0.28
	3413.10	0.00401	37 ± 7	7.9 ± 1.4	143 ± 21	9.63 ± 1.44
	3916.84	0.0320	12 ± 3	2.6 ± 0.6	15.8 ± 1.4	1.07 ± 0.09

a. Average values for JB-1 and Allende with *n* (number of analyses) = 10 and 11, respectively. Errors are due to standard deviations (1 σ). b. Data from the literature.⁷ c. Recommended values for JB-1.⁸ d. Recomended values for Allende.⁹ e. No meaningful value is obtained.

Table 2 Comparison of Na and Mg contents for lunar meteorites determined by PGA and INAAª

Elamont	Meteorite name	PGA		INA A content Of	
Element		Content, %	Con. of B ^b	INAA content, %	FOAMAA
Na	Y-86032,34	0.37 ± 0.03	0	0.352 ± 0.017	1.0 ± 0.1
	Y-86032,36	0.36 ± 0.06	0	0.428 ± 0.018	0.85 ± 0.15
	Y-86032,131	0.32 ± 0.02	32	0.371 ± 0.017	0.87 ± 0.07
	Y 981031	0.26 ± 0.08	86	0.315 ± 0.018	0.83 ± 0.27
	Y 983885	0.35 ± 0.09	90	0.242 ± 0.041	1.5 ± 0.4
Mg	Y-86032,34	3.6 ± 1.2		3.79 ± 0.37	0.94 ± 0.33
-	Y-86032,36			3.36 ± 0.36	
	Y-86032,131	3.0 ± 0.7		3.34 ± 0.33	0.90 ± 0.22
	Y 981031	5.9 ± 1.2		5.60 ± 0.59	1.0 ± 0.2
	Y 983885	3.7 ± 1.4		4.92 ± 0.50	0.76 ± 0.29

a. Errors are due to counting statistics (10). b. Contribution of B to the B-Na composite peak (% in counts).

研究施設: JRR-3、装置: PGA、研究分野: 宇宙化学、分析化学

Element	Meteorite name	PGA	INAA
Na		(472.202) ^b	(1368.60)*
	Y-86032,34	0.085	0.0342
	Y-86032,36	0.15	0.0289
	Y-86032,131	0.049	0.0273
	Y 981031	0.050	0.0265
	Y 983885	0.075	0.0404
Mg		(2828.172) ^b	(1014.43) ^c
	Y-86032,34	2.3	0.144
	Y-86032,36	12.2	0.385
	Y-86032,131	1.6	0.398
	Y 981031	2.6	0.921
	Y 983885	2.2	0.926

Table 3 Detection limits (in mass %) for PGA and INAAª

a. These values correspond to Na and Mg contents in Table 2 for individual samples.b. Peaks at these prompt gamma-ray energies (in keV) were used for

r

calculation.

c. Peaks at these decay gamma-ray energies (in keV) were used for calculation.

Fig. 3 Comparison of PGA and INAA data of Na and Mg for lunar meteorite samples. Vertical bars accompanied by data symbols indicate 1σ uncertainly ranges due to counting statistics.

Fig. 1 Gamma-ray spectra for JB-1 (a) and Allende (b). A part of each spectrum for the energy range from 450 to 500 keV is shown. A peak at 472.202 keV was used for the determination of Na.

Fig. 2 Gamma-ray spectra for JB-1 (a) and Allende (b). A part of each spectrum for the energy range from 2820 to 2840 keV is shown. A peak at 2828.172 keV was used for the determination of Mg.

研究施設: JRR-3、装置: PGA、研究分野: 宇宙化学、分析化学

3-7

火成岩、堆積岩試料の即発γ線分析

Prompt γ-ray analysis for igneous and sedimentary rock samples. 福岡孝昭¹、新正裕尚²、新藤智子¹、青木かおり¹、楠野葉瑠香¹、 三浦亜由美¹、永川由紀¹、関美乃¹ ¹立正大学地球環境科学部、²東京経済大学経営学部

Takaaki FUKUOKA¹. Hironao SHINJO², Tomomi SHINDO¹, Kaori AOKI¹, Haruka KUSUNO¹, Ayumi MIURA¹, Yuki EGAWA¹, Minori SEKI¹

¹Faculty of Geo-environmental Science, Rissho University, ²Department of Business Administration, Tokyo Keizai University

1. はじめに

本研究は島弧火成岩の成因に関する研究と地 圏環境の化学情報を提供する地球化学図の作成 の二つのテーマからなっている。

どちらのテーマも即発γ線分析が得意とする ホウ素の分析を利用している。分析法については Sano et al. (1999) に従った。

2. 島弧火成岩のマグマソース

島弧火成岩のマグマソースについて議論する ことを目的として即発γ線分析によりホウ素等 の元素濃度を求めた。ここ数年にわたり、西南日 本弧の中期中新世火成岩および南米チリのアン デス弧の火山岩を主要な対象として分析を進め ている。平成 19~21 年度についてもこれらの岩 石群について、データを蓄積している状況であっ た。

ここでは、上に述べた分析対象の岩石群の中で、 西南日本弧の瀬戸内火山岩類の分析結果につい て以下に詳述する。

島弧火山岩のマグマ成因は古くて新しい問題 である。そのマグマソースの複雑さが、単純なモ デル化を妨げる。なかでも島弧マグマに固有のマ グマソース端成分として沈み込むスラブに由来 するものがある。スラブ由来成分をマントルウェ ッジにもたらす媒体は、水を中心とする流体相で あるのか、ケイ酸塩メルトであるのかについては 昔から多くの議論があるが、沈み込むスラブの温 度構造により、両者のいずれが主体となるかが決 まるものと考えられている。一般に、形成年代の 若い高温の海洋プレート沈み込みがおこった場 所においては、スラブ由来成分はケイ酸塩メルト として、マントルウェッジに添加されるものとさ れる。

西南日本弧の島弧延長方向におよそ 800 km に わたり点々と分布する瀬戸内火山岩は玄武岩に 加え、記載岩石学的特徴からマントルウェッジか んらん岩と平衡に存在し得た、初生的マグマに由 来する高 Mg 安山岩 (HMA) の産出が古くより注目 されてきた。瀬戸内火山岩は日本海形成に伴う、 西南日本弧の時計回り回転直後の、高温の四国海 盆スラブの沈み込みのもとで活動したものであ ることより、そのような特殊なテクトニックな環 境のもとでのマグマ成因が考えられてきた。そし てかつてはマントルウェッジが高温である条件 下で、通常の火山フロントより海溝側で、水に富 むかんらん岩が部分融解することにそのマグマ 成因を求める提案がされていたが (Tatsumi and Maruyama, 1989 など)、近年では、高温の四国海 盆の沈み込みがあったこと、および堆積物に由来 する成分による汚染が極めて大きいことなどか ら、スラブ融解によるマグマ成因論が議論される ようになった。そして瀬戸内火山岩類の玄武岩お よび、高 Mg 安山岩については、スラブ表層部の 堆積物を主とする融解メルトとマントルウェッ ジの反応によるマグマ成因が提案され、多種の液 相濃集元素や同位体種を取り入れた、そのマグマ 成因論に沿ったモデルが検討されている (Tatsumi, 2006 など)。

このようなスラブ由来成分の評価は、いわゆる

JRR-3M、即発γ線分析装置、地球化学

液相濃集元素(incompatible element)の含有量 や種々の同位体組成(Sr、Nd、Pb、Hf等)に基づ いて行われることが多い。また、元素種により流 体相や、ケイ酸塩メルトの中での挙動が異なるの で、様々な元素種、あるいは同位体種の分析によ り得られる情報を総合的に検討することが望ま しい。

瀬戸内火山岩については主に玄武岩及びHMAに ついて多種の液相濃集元素や同位体種を取り入 れたマグマ成因論モデルが検討されている。しか しこれまで、ホウ素についての分析の報告はほと んど無い。ホウ素は、沈み込むスラブ上の堆積物 には豊富に含まれ、スラブ由来成分の評価には、 重要な元素種の一つである。種々の地球化学的デ ータの蓄積されている、瀬戸内火山岩類の玄武岩 および、HMA についての分析を行なうことで、ス ラブ由来成分を総合的に検討することができる

なお、本研究に用いた試料については即発ッ線 分析によるホウ素のみならず種々の微量元素濃 度の分析も併せて行っている。野外調査や試料の 入手および、中性子放射化分析以外の分析につい ては、産業技術総合研究所の角井朝昭氏および、 東京大学地震研究所の折橋裕二氏との共同研究 として行われたものである。また蛍光X線分析お よび、ICP-MS 分析は東京大学地震研究所の共同利 用プログラムの援助を受けて行ったものである。

試料は、九州〜紀伊半島西部の瀬戸内火山岩分 布域の各地から、HMA および、玄武岩を収集した。 さらにそれらに伴う、流紋岩・デイサイトもあわ せて採取した。列挙すると、大分県の大野火山岩 類、愛媛県の高縄半島周辺、香川県の讃岐平野お よび小豆島、大阪地域および紀伊半島外帯域の埴 田地域の HMA である。これらの試料をメノウ乳鉢 で細粉化した後、700 mg 程度の粉末を加圧整形し て作成したペレットを FEP フィルムに融封したも のを測定試料とした。

HMA のホウ素含有量は 14~73 ppm の範囲にあり 平均 30.5±19.5 ppm (n=13)であった。玄武岩お よびデイサイト・流紋岩のホウ素含有量はそれぞ れ 7~22 ppm、10~112 ppm であった。岩石種別 によるホウ素濃度をヒストグラムに示した(図1)。

図1. 瀬戸内火山岩のホウ素含有量

図2に示したのは、HMA および玄武岩の Th/La、 B/La、Pb/Ce 比の島弧延長方向変化である。これ らの元素比はスラブ上の堆積物由来成分の添加 により上昇するものである。これらの比は各地域 内でのバリエーションが大きく、島弧延長方向で の系統的な変化は見られない。これらの元素比の 変化をスラブ由来成分の添加量の差違で説明す るために、単純な混合モデルを考察した。

図 2. HMA および玄武岩の Th/La、 B/La、 Pb/Ce 比の along arc variation

堆積物の元素濃度はPlank and Langmuir (1998) および Sano et al. (2001)により、変質海洋地 殻 (AOC) のそれはSinger et al. (2007)を用い た。堆積物及び AOC 由来の流体についての元素の 移動度は Kogiso et al. (1997)および Aizawa et

JRR-3M、即発 γ 線分析装置、地球化学

al. (1999)の値を用いた。ホウ素以外の元素につ いての堆積物融解に際してのbulk Kd は Johnson and Plank (1999)の値を用いた。ホウ素のbulk Kd は適切な実験値がないので、0.1を仮定した。ま た、スラブ由来成分添加前のマントルウェッジか んらん岩の元素比については、瀬戸内火山岩の玄 武岩の中で最も枯渇的なものを用い、それと上記 の仮定の下で求めた堆積物メルトの元素比の間 の2成分混合を考えた。すると、図3に示すよう に、Th/La、B/La、Pb/Ce 比について、枯渇した玄 武岩に相当するマントルに25%程度までの、堆積 物メルトの添加により、HMA に見られる、Th/La、 B/La、Pb/Ce 比のバリエーションは良く説明され る。

図 3. Th/La、B/La、Pb/Ce 比について堆積物メルトと玄武岩(マントルウェッジの初期値と仮定)の2成分混合とHMAの組成の比較。

今後、より多くの微量元素組成も含めて、モデ ルの妥当性を検討したい。さらに、ここで見られ る、元素比の広いバリエーションが、島弧横断方 向の傾向を持たないことから、何が、堆積物由来 成分の多寡を決める要因であるのかについても 考察を進めたい。

3. 荒川上流域のホウ素の地球化学図

地球化学図は地殻表層における元素の濃度分 布を示すもので、自然環境の化学的バックグラウ ンドの情報を得ることができ、人為的環境変化を 評価する上での指標ともなる。立正大学地球環境 科学部宇宙地球化学研究室では、2000年度から埼 玉県西部に位置する秩父地域、荒川上流域の地球 化学図を作成してきた。これまでの結果の多くは 背景の地質をよく反映していることがわかった。 2007~2009年度は合計189ヶ所の河川堆積物(砂) を採取し、JRR-3M 炉の即発γ線分析装置でホウ素 の分析を行った。

2006 年度までの結果を含めたホウ素の地球化 学図を図4に示した。地質図(図5)と対比する と花崗岩地域でホウ素濃度が高いことがわかる。 薄川流域にもホウ素濃度が高い地点があるが、そ の理由はまだ明らかになっていない。今後「何故 か?」を明らかにすることも必要である。

図4. 荒川上流域のホウ素の地球化学図

図5. 荒川上流域の地質図と試料採取地点

JRR-3M、即発γ線分析装置、地球化学

謝辞

本研究の実施に当たり、原子力機構の松江秀明 博士と関谷祐二氏に大変お世話になりました。ま た、大学開放研究室のみなさまにもお世話になり ました。記して感謝申し上げます。

成果の公表

- 新正裕尚・折橋裕二・平田大二・ナランホ ホセ・ 長谷中 利昭・福岡 孝昭・佐野 貴司 ・安間 了 (2007)「チリ弧 Southern Volcanic Zone の第 四紀火山岩の微量元素組成」日本地球惑星科学 連合 2007 年大会.
- 新藤智子・福岡孝昭(2007)「荒川上流中津川・ 河原沢川・赤平川流域の地球化学図」2007 年 度日本地球化学会第54回年会.
- 新正裕尚・折橋裕二・角井朝昭・福岡孝昭・長谷 中利昭・佐野貴司(2008)「瀬戸内火山岩類のホ ウ素含有量」日本地球惑星科学連合 2008 年大 会.
- 新藤智子・福岡孝昭・青木かおり・石本光憲(2008) 「高濃度 Mg、Cr 地点の発見と Pb 人為汚染の可 能性-荒川上流薄川流域の地球化学図」2008 年度日本地球化学会第 55 回年会
- 福岡孝昭・青木かおり・楠野葉瑠香 (2009)「河 床堆積物の化学分析に基づく地球化学図の作 成マニュアルと今後の展望」立正大学 地球環 境研究、第11号、227-238.
- 福岡孝昭・青木かおり・楠野葉瑠香 (2009)「奥 秩父荒川上流の地球化学図-立正大学での地 球化学図作り」日本惑星科学連合 2009 年大会.

「石灰岩の中性子放射化分析:カルサイト結晶格子中の宇宙線生成核種³⁶C1を用いた 応用研究に向けて」

Prompt Gamma-ray Analysis of Limestone for the Initial Application of In-situ-produced Cosmogenic ³⁶Cl in Calcite for Quantifying Earth Surface Processes

筑波大学大学院 数理物質科学研究科 化学専攻 末木 啓介 京都大学防災研究所 地盤災害研究部門 山地災害環境分野 松四 雄騎 筑波大学 研究基盤総合センター 応用加速器部門 笹 公和

研究の目的と意義

本研究では、日本列島全域から採取した石灰岩 の元素分析、特に Ca, B, Sm, Gd の定量を行う. これにより石灰岩中での宇宙線生成核種³⁶C1の年 間生成率を決定し、この核種の存在濃度を、地表 プロセスの定量化に関する研究に応用すること を最終的な目的とする.

石灰岩は地球の地表面積の約12%を占め,全球 に存在する二酸化炭素のおよそ90%を岩石圏に 固定する役割を担っている.それゆえ,降水によ る石灰岩の溶解は,地球規模の炭素循環およびそ の気候変化との相互作用過程を理解する上で重 要である.また,世界各地に分布する炭酸塩岩特 有の地形(カルスト)は,気候帯によって多様な 形態を呈しており,その成因を探ることは,カル スト地形学上の重要な課題の一つである.

長期時間スケールでの石灰岩の削剥速度は、こうした課題を直接的に解決しうる重要な情報となる.本研究では石灰岩の主要構成鉱物であるカルサイト(CaCO₃)の結晶格子中に生成する宇宙線 生成核種³⁶C1を用いて、亜熱帯から亜寒帯までの 気候環境における石灰岩の削剥速度の推定を試みる.

手法の原理と原子炉利用の必要性

一般に地表近傍の鉱物中では、二次宇宙線の照 射によって¹⁰Be,²⁶A1,³⁶C1 などの核種が生成する. この宇宙線生成核種の濃度は、核反応による生 成・蓄積と、岩石表面の侵食および放射壊変によ る損失によって平衡状態となる.近年の加速器質 量分析(AMS: Accelerator Mass Spectrometry) の発達によって、鉱物中の宇宙線生成核種の濃度 が定量できるようになり、岩石表面の長期的削剥 速度を推定することが可能となった.この計算に おいては核種の生成率とその深度分布の情報が 必要不可欠である.

鉱物中の宇宙線生成核種の生成率は、その鉱物 が存在する地点の緯度と標高のほか、鉱物の化学 組成、特に宇宙線による核反応の標的原子核(た とえば Si, Ca, Fe など) および中性子吸収核の 存在量 (B, Gd, Sm など) の関数である. カルサ イトにおける³⁶C1の生成の場合は、主として⁴⁰Ca の核破砕反応によるが、このほか、40Caのミュー オン捕獲,³⁵C1の中性子捕獲などの生成プロセス が寄与している.既存のキャリブレーション研究 により,カルサイトにおける³⁶C1の生成率は緯 度・標高, 試料の化学組成のパラメータの値さえ 得られれば,即座に計算することが可能となって いる. 即発ガンマ線分析 (PGA: Prompt Gamma-ray Analysis)を用いれば、カルサイトの主要構成元 素のみならず中性子吸収核の存在量も簡便に定 量することができる.これが共同利用申請に至っ た経緯である.

試料の採取と分析,およびその成果

本研究では、日本列島各地の炭酸塩岩の分布す る地域において、地表面に露出した岩石試料の収 集を行った(図1).地域ごとの削剥速度の差異を 検証する試料は、地表に露出した石灰岩柱(ピナ クル)の頂部約5 cm程度から採取した.また、 秋吉台においてカルスト特有の溶食凹地(ドリー ネ)の形成プロセスおよび形成時間スケールを論

JRR-3M、PGA、地球科学
じるための試料を, 典型的な規模と形状を持つド リーネの断面測線上において採取した.

採取した岩石試料は粉砕し,篩過整粒したのち, 純水および酸で洗浄し、大気由来の核種や、その 他のコンタミネーションを除去した. 乾燥試料を 秤量し,³⁵Cl にエンリッチされたキャリア(³⁵Cl: 99atom%) を添加して酸で分解した. 試料溶液中 の塩素を塩化銀沈殿として回収し、乾燥させて AMS のターゲット試料とした. 筑波大学 研究基盤 総合センター 応用加速器部門の AMS システムを 用いて³⁶C1/C1および³⁵C1/³⁷C1同位体比を決定し, 岩石試料に含まれている³⁶C1 および安定 C1 濃度 を算出した.

また,洗浄後の乾燥試料の一部を分取し,フッ 素樹脂フィルムに封入して PGA のターゲット試料 とした. JAEA JRR-3M のビームホールにおいて中 性子を照射し、PGA によって主要元素および中性 子吸収核の存在量を求めた.

Naka-tonbetsu (Nk)-

Iwaizumi (Iz)

Tono (Tn)

Abukuma (Ab)

Akiyoshi (Ak)

Hirao (Hr)

Yamazato (Ym)

130

Hedo (Hd)

Shibetsu (Sb

45 °N

40

30

試料採取地点の緯度と標高,および PGA によっ て得られた試料の化学組成を用いて³⁶C1の生成率 を算出した.この核種生成率を入力条件とし、AMS によって得られた³⁶C1濃度をもっとも良く説明す る削剥速度を数値逆解析によって求めた. 削剥速 度の不確かさは、全ての計測値およびパラメータ の不確かさを変動因子としたモンテカルロシミ ュレーションによって評価した.

日本各地における削剥速度と,気候条件(平 均気温および年降水量)との関係を図2に示す. 日本列島の亜熱帯から亜寒帯までの地域では、気 候が全く異なるにもかかわらず、炭酸塩岩は 20-60 mm kyr⁻¹の類似した速度で削剥されており, 気候条件と削剥速度の間には明瞭な関係は認め

135

or rock outcrops

JRR-3M、PGA、地球科学

られなかった.これは,従来,炭酸塩岩の削剥に おいて最も重要であると考えられていた化学的 溶解作用(溶食)に加えて,凍結破砕など物理的 な侵食作用も大きな寄与をもたらしている可能 性を示唆している.

次に、秋吉カルストにおいてドリーネを対象に、 凹地を構成する斜面の削剥速度および凹地の形 成時間を推定した例を図3に示す. 削剥速度はド リーネの中心に近づくにつれて大きくなる傾向 があり、凹地周縁と凹地底部では、削剥速度に3 倍程度の差異が認められた(図3).得られた削剥 速度を用いて, 凹地の過去の横断形状を復元した ところ,このドリーネの形成に要した時間は,約 30万年であることが明らかとなった(図3).ま た, 削剥速度は各地点での単位等高線長あたりの 集水面積に比例して増大することが明らかとな った.ここで得られた集水面積と削剥速度の関係 から周囲の複数のドリーネの形状を説明するこ とができた.これにより、溶食ドリーネが集水に 伴う石灰岩の溶解量の増大によって形成される という従来の仮説は検証された.

成果に対する評価

本研究で,宇宙線生成核種³⁶C1の分析によって

図 3. 秋吉台において ³⁶Cl から求めた削剥速度に より復元した溶食ドリーネの形成過程.

得られた炭酸塩岩の削剥速度の値は、他の手法に よっては得難い万年スケールでの平均値である. こうした長期スケールでの地表面の削剥速度の 値は,将来行われるであろう高レベル放射性廃棄 物の地層処分において必要とされている地質環 境の長期安定性評価に資するものである. 宇宙線 生成核種による地表プロセスの定量化は、 今後ま すますそのニーズを増大させるものと考えてお り、本研究ではそうした定量化のパイロットケー スを示すことができた.また気候あるいは集水地 形と削剥速度との関係を論じることは、カルスト 地形の発達過程の定量的理解を推進させるもの であり、本研究はその先鞭をつけたものとして位 置づけられる. なお, 以上の成果は, 次項に示す ように、国内外の学会で発表し、国際誌 Geology および Nuclear Instruments and Methods in Physics Research B に原著論文として投稿, 受理 された.

今後はさらに対象範囲を拡大し、中国、東南ア ジアの炭酸塩岩地域の地表面から採集した試料 の分析を行う.また、地表面下から採取した炭酸 塩岩およびケイ酸塩岩、さらにはそれを母材とす る土壌の分析を行う予定である.これにより化学 的風化と物理的侵食の寄与を分離した形で、削剥 速度を再評価できるものと考えている.また、こ れまでに宇宙線生成核種の生成率が明らかにな っていない種々の鉱物についても分析を行うこ とを検討している.

成果の公表

査読つき原著論文

- Matsushi Y., Hattanji T., Akiyama S., Sasa K., Takahashi T., Sueki K., Matsukura Y., 2010. Evolution of solution dolines inferred from cosmogenic ³⁶Cl in calcite. Geology 38, 1039–1042.
- Matsushi Y., Sasa K., Takahashi T., Sueki K., Nagashima Y., Matsukura Y., 2010. Denudation rates of carbonate pinnacles in Japanese karst areas: estimates from cosmogenic ³⁶Cl in calcite. Nuclear Instruments and Methods

JRR-3M、PGA、地球科学

in Physics Research B 268, 1205-1208.

紀要等

Matsushi Y., Sasa K., Sueki K., Takahashi T., Hattanji T., Matsukura Y., 2009 Quantifying long-term limestone denudation using cosmogenic ³⁶Cl: an application to formative rate of a doline in the Akiyoshi karst, Japan. UTTAC Annual Report 2008, 25-26.

学会発表

- Matsushi Y., Sasa K., Sueki K., Takahashi T., Nagashima Y., Matsukura Y., Denudation rates of karst surfaces in Japan: estimates from cosmogenic chlorine-36. 7th International Conference on Geomorphology. Melbourne, Australia. Jul 2009.
- Matsushi Y., Sasa K., Takahashi T., Sueki K., Nagashima Y., Matsukura Y., Chlorine-36 in calcite: denudation rates of karst landform in Japan. 11th International Conference on Accelerator Mass Spectrometry. Rome, Italy. Sep 2008.
- 松四雄騎・笹公和・末木啓介・高橋努・松倉公憲: アジアのカルストにおける丘頂部の削剥速度: 万年スケールでの支配要因は気候ではない. 日本地形学連合,立正大学,2010年11月.
- 松四雄騎・松崎浩之・笹公和:岩石中の宇宙線生 成核種のポテンシャルと分析コスト 人・時 間・費用.日本地形学連合,立正大学,2010年 11月.
- 松四雄騎・松崎浩之:宇宙線生成核種を用いた山 地流域からの長期的土砂生産速度の定量.日 本地球惑星科学連合,幕張メッセ国際会議場, 2010年5月.
- 松四雄騎・松崎浩之・笹公和:宇宙線生成核種を 用いた地表面削剥速度の推定.タンデム加速 器及びその周辺技術の研究会,東京大学,2010 年7月.
- 松四雄騎・笹公和・松崎浩之・松倉公憲:カルス ト地形研究における宇宙線生成核種の応用. 日本地球惑星科学連合,幕張メッセ国際会議場, 2010年5月.

- 松四雄騎・八反地剛・秋山沙苗・笹公和・高橋努・ 末木啓介・松倉公憲:宇宙線生成核種 C1-36 か ら推定した溶食ドリーネの形成時間スケール. 日本地形学連合,京都教育大学,2009 年 10 月.
- 松四雄騎・笹公和・末木啓介・高橋努・長島泰夫・ 松倉公憲:日本列島における露出炭酸塩岩の 長期的侵食速度:カルサイト中の宇宙線生成 核種³⁶C1を用いた推定.第53回放射化学討論 会,日本大学,2009年9月.
- 松四雄騎・松倉公憲・笹公和・松崎浩之: 宇宙線 生成核種を用いた地表面の侵食速度の定量: 日本列島における適用例.日本地球化学会第 56回年会,広島大学,2009年9月.
- 松四雄騎・笹公和・末木啓介・高橋努・長島泰夫・ 松倉公憲:日本列島におけるカルスト地形表 面の削剥速度:宇宙線生成核種³⁶C1による推定. 日本地球惑星科学連合,幕張メッセ国際会議場, 2009年5月.

西南日本弧火山マグマ組成と沈み込み成分のキャラクタライゼーション Compositions of Southwestern Japan arc magmas and characterization of subduction components

熊本大学 大学院自然科学研究科 長谷中 利昭, 三好 雅也, 下野 まどか, 関口 悠子, 堀 直之, 田村 智弥, 有賀 翔平, 上田 恭裕

1. はじめに

九州を含む西南日本弧の火山活動は、フィリ ピン海プレートがユーラシアプレートに沈み込 むことに関係している. 沈み込むフィリピン海 プレートが東部の四国海盆(15~26 Ma)と西 部の古いプレート(40~60 Ma)で年代が異な っていること、九州パラオリッジが沈み込んで いること,別府島原地溝帯があることを考える と,九州の火山活動は複雑なテクトニックセッ ティングの反映だと言える (Figs. 1&2). 沈み込 み帯深部でのマントル物質の部分溶融によるマ グマ生成条件や生成するマグマ組成にはプレー トから放出される流体相が鍵を握ると考えられ る. 流体相によって海洋プレートからマントル にもたらされる物質を「沈み込み成分」と呼ぶ が,火山弧のマグマを研究し,地球における物 質循環を理解する上で重要な情報をもたらす.

海洋底堆積物,変質海洋底玄武岩に多量に含 まれるホウ素は,他の沈み込み成分に比べ非常 に流動性に富むため,マントルのマグマ起源物 質へ流体が寄与する度合いを調べる良いトレー サーとなる.沈みこむフィリピン海プレートが 九州直下のマグマ起源物質に与えた影響を,玄 武岩~安山岩のホウ素含有量を用いて検討した. 玄武岩~安山岩を選んだ理由は,マグマと地殻 物質の相互作用の影響が少ないためである.

本研究で分析したホウ素は試料準備過程にお ける汚染が起こりやすいので,原子炉を利用し た非破壊の即発ガンマ線分析法を採用した.

Fig. 1 日本列島およびその周辺のテクトニック セッティング (Miyoshi et al., 2008 の図を引用)

データ解析に当たっては分析した各火山岩の ホウ素の含有量をそのままの形で取り扱うので はなく, B/Zr, B/Nb など,液相濃集元素の比を用 いた.これらの値はマグマの結晶分化作用や部分 溶融の度合いの影響を受けず,マントルの起源物 質の値を反映しており,沈み込み成分の影響を最 も的確に見積もることができる指標である.

Fig. 2 北部九州玄武岩の時空分布. IAB:島弧玄武 岩, OIB:海洋島型玄武岩, CA:カルクアルカリ岩, ME:マフィック捕獲岩, HMA:高マグネシア安山岩, ADK:アダカイト, WBZ:和達-ベニオフ帯, IK:壱岐, KM:北松浦, GK:玄海島, UZ:雲仙, OY:大矢野島, SS:天草下島, AS:阿蘇, KJ:九重, YT:由布鶴見, ON: 鬼箕, HVZ:豊肥火山地域, YB:耶馬渓 (Miyoshi et al., 2008 の図を引用)

2. 分析試料

北部九州からは、壱岐火山、玄海島、北松浦地 域、由布火山、鶴見火山、鬼箕火山、九重火山、 耶馬渓地域、阿蘇火山、雲仙火山、多良岳火山、 大矢野島、天草地域、五島列島福江島、耶馬渓火 山岩類から採取したもの、南部九州からは、霧島 火山、桜島火山、開聞火山、肥薩火山岩類から採 取したものを分析試料とした。全試料について即 発ガンマ線分析を行った。

3. 分析方法

全ての分析試料は粉砕して粉末化し,0.6-0.8g を105-110℃の乾燥炉の中で乾燥した.これを厚 さ2-3mm,直径12mmにプレス錠剤化し,フッ化 エチレンプロピレン(FEP)フィルムの袋中に融 封した.中性子放射化とγ線測定にはJRR-3M炉 の熱中性子ガイドビームに設置された即発γ線 分析装置を用い,1000~7200秒の照射を行った. 試料の形状や中性子束の変動に伴うγ線強度の 変動は、ケイ素を内部標準として補正した.定量 を行った元素はホウ素(B)、塩素(Cl)、チタン (Ti)、カリウム(K)、サマリウム(Sm)、ガドリ ウム(Gd)、鉄(Fe)、水素(H)、カルシウム(Ca) である.ホウ素の478 keVのピークはナトリウム の472 keVのピークと重なっているので、高エネ ルギー側半分についてのみピーク面積を計算し た.分析法の詳細は佐野ら(1998)および Sano et al.(1999)に記載されている.試料は同時に蛍光 X 線分析法で主成分元素についても分析した.

4. 分析結果・考察

九州におけるホウ素マッピング結果は大変興 味深いものであった.フィリピン海プレートの沈 み込みが始まった 600 万年前を境として,それ以 前には沈み込みの影響はほとんど見られなかっ たのが,600 万年以降には沈み込みの影響が現れ 始めた(Fig.3).沈み込み成分が顕著なのは日向 灘に近い火山フロントの火山のみで,背弧側に位 置する火山においては沈み込み成分は見られな かった.このことは地震波によって求められた沈 み込みプレートの形状が火山フロント付近で急 角度に折れ曲がってしまい,背弧側まで達してい ないことと調和的である.

また北部九州と南部九州でも沈み込み成分の 濃集度に大きな違いが見られた(Figs. 3&4). 姫 島,由布鶴見,久重,鬼箕,北部九州の火山は沈 み込み成分が非常に少ないのに対し,阿蘇,霧島, 桜島,開聞など南部九州の火山は沈み込み成分が 多いことがわかった.これは沈み込むフィリピン 海プレートの年代と関連づけられる.北部九州で は若い年代のプレートが沈み込んでいるのに対 し,南部九州は古い年代のプレートが沈み込んで いる.両者の境をなす九州パラオリッジが沈み込 む阿蘇,霧島火山は特に沈み込み成分が顕著であ る.北部九州で沈み込み成分が少ないことは,若 いプレートは比較的熱いために,火山弧の直下,

JRR-3M, 即発ガンマ線分析装置, 地球科学

Fig. 3 北部九州火山岩の元素比の島弧横断方向 の変化. 左図は 1100 万年前から 600 万年前, 右図は 600 万年前から現在までの変化を示す.略 号は Fig. 2 と同じ.影を付けた部分は中央海嶺玄 武岩 (MORB) や海洋島玄武岩 (OIB)の組成域 を示す (Miyoshi et al., 2008 の図を引用).

約100kmの深さに達する前に沈み込み成分が失われてしまうことで説明が可能である.

他の島弧と比較した場合,九州弧は総じて沈み 込み成分が少ない(Fig.5).古い時代のもの,背 弧側のものはとりわけ沈み込み成分が少なく, MORB や OIB に近い値を持ったものまで見つか る.

Ba, Rb, K と B で沈み込み成分の比較をした. 精度をあげたマッピングの結果,海溝から内陸に 入るに従って沈み込み成分が減少する島弧横断 方向の変化が見られるのは,九州南部だけで,し かもホウ素のみであった(Fig.4).マントルの流 体相におけるモビリティ(Mobility)が大きいホ ウ素のみで,感度良く沈み込み成分の影響が見ら れることを確認した.

Fig.4 南部九州火山岩の元素比の島弧横断方向 の変化. 左図は 1000 万年前から 40 万年前,右 図は 30 万年前から現在までの変化を示す. プロ ットしているのは霧島,肥薩火山岩類,天草下島 のデータである.比較のため千島弧,伊豆弧,東 北日本弧,キャスケード,マリアナ弧のデータを 示す (Miyoshi et al., 2010 の図を引用).

5. まとめ

九州の火山岩について沈み込み成分を分析し た結果,以下のことがわかった.

1) フィリピン海プレートの沈み込みが始まった 600 万年前以降に沈み込み成分が観察される.

2)火山フロントで沈み込み成分は顕著であるが, 背弧側ではほとんど認められない.

3)他の島弧と比べると、九州の火山岩は沈み込 み成分が少ない.これは沈み込むプレートの年代 が比較的若く、熱いことを反映している.

4) 北部九州と南部九州の火山岩の沈み込み成分 にもプレートの年代の違いの影響が見られ,北部 九州にはほとんど沈み込み成分を含まない火山 岩が火山フロントに認められる.

5) ホウ素は最も感度の良い沈み込み成分元素である.

JRR-3M, 即発ガンマ線分析装置, 地球科学

Fig. 5 ホウ素/ニオブ比対ニオブ含有量. (a) 古い火山岩,(b) 新しい火山岩.北部九州の火 山岩組成と他の島弧火山岩の組成の対比を試み た. K:千島弧, M:マリアナ弧, NEJ:東北日本弧, MVB:メキシコ火山帯, C:キャスケイド, MORB: 中央海嶺玄武岩, OIB:海洋島型玄武岩 (Miyoshi et al., 2008 の図を引用).

謝辞

中性子放射化分析を行う上で共同利用実験計 画,試料準備,測定器利用などにおいて澤幡浩之 氏,川手稔氏,石本光憲氏をはじめとする大学開 放研究室の皆様には実験遂行にあたって多大の アドバイス,ご援助を受けました.実験中には日 本原子力研究開発機構の松江秀明博士のご指導 を受けました,分析方法に関して立正大学の福岡 孝昭教授,国立科学博物館の佐野貴司博士にご教 示いただき,分析結果に関しても議論していただ きました.皆様のサポートなくしては本研究の遂 行は難しかったと思います.深く感謝いたします.

6. 引用文献(研究成果に含まれていないもの)

- 佐野貴司, 福岡孝昭, 長谷中利昭, 米沢仲四郎, 松江秀明, 澤幡浩 之, 即発γ線による火山岩中ホウ素の分析: ケイ素を用いた内 部標準法,, RADIOISOTOPES, 47, 1998.
- Sano T., T. Fukuoka, T. Hasenaka, C. Yonezawa, H. Matsue, and H. Sawahata, Accurate and efficient determination of boron content in volcanic rocks by neutron induced prompt gamma-ray analysis, Journal of Radioanalytical and Nuclear Chemistry, 239, 613-617, 1999.

7. 研究成果の公表

学会誌

- Miyoshi, M., Shimono, M., Hasenaka, T., Sano, T., Mori, Y. and Fukuoka, T., Boron systematics of Hisatsu and Kirishima basaltic rocks from southern Kyushu, Japan. Geochemical Journal, 44, 359-369., 2010.
- Chapman, N., Apted, M., Beavan, J., Berryman, K., Cloos, M., Connor, C., Connor, L., Hasenaka, T., Jaquet, O., Kiyosugi, K., Litchfield, N., Mahony, S., Miyoshi, M., Smith, W., Sparks, S., Stirling, M., Villamor, P., Wallace, L., Goto, J., Miwa, T., Tsuchi, H., Kitayama, K., Development of methodologies for the identification of volcanic and tectonic hazards to potential HLW repository sites in Japan -The Kyushu case study- NUMO (Nuclear Waste Management Organization of Japan) Report TR-09-02, 2009.
- Miyoshi, M., Shimono, M., Hasenaka, T., Sano, T., Fukuoka, T., Determination of boron contents in volcanic rocks by prompt-gamma ray analysis: an application to magma genesis in Kyushu island, SW-Japan. Journal of Radioanalytical and Nuclear Chemistry, 278, 343-347, 2008.
- Miyoshi, M., Nasu, T., Tajima, T., Kido, M., Mori, Y., Hasenaka, T., Shibuya, H., Nagao, K., K-Ar ages of high-magnesian andesite lavas from northern Kyushu, Japan. Journal of Mineralogical and Petrological Sciences, 103, 183-191, 2008.
- Miyoshi, M., Fukuoka, T., Sano, T. and Hasenaka, T., Subduction influence of Philippine Sea plate on the mantle beneath northern Kyushu, SW Japan: an examination of Boron contents in basaltic rocks. Journal of Volcanology and Geothermal Research, 171, 73-87, 2008.

JRR-3M, 即発ガンマ線分析装置, 地球科学

三好雅也,長谷中利昭,森康,山下茂,阿蘇カルデラ西部に分布 する栃ノ木溶岩中にみられる組成不均質とその成因.岩石 鉱物科学,日本岩石鉱物鉱床学会,36,15-29,2007.

学会発表

- Hasenaka, T., Coexistence of shield volcanoes and small cones from the Michoacan-Guanajuato volcanic field: their distribution, age, magma output rate, and composition of magmas. 250th anniversary of Volcan Jorullo's birth in Michoacan, Mexico. Morelia, Mexico, 2009
- 田村智弥,長谷中利昭,阿蘇火山中央火口丘群,往生岳および中 岳火山噴出物の岩石学的研究 . 地球惑星科学関連学会, 2009 年合同大会,千葉幕張メッセ,2009.
- 関口悠子,長谷中利昭,姶良カルデラ火山に見られる3回のマグ マ活動サイクル.地球惑星科学関連学会,2009年合同大 会,千葉幕張メッセ,2009.
- 三好雅也,新村太郎,古川邦之,長谷中利昭,阿蘇火山における先 カルデラ期から後カルデラ期へのマグマ組成の時間変化. 地球惑星科学関連学会,2009年合同大会,千葉幕張メッセ, 2009.
- Miyoshi, M.; Hasenaka, T.; Ryan, J. G.; Atlas, Z. D.; Shimono, M.; Sano, T.; Fukuoka, T., Boron and trace element systematics of Quaternary basaltic rocks from Kyushu, Southwestern Japan, American Geophysical Union, Fall meeting, San Francisco, 2008.
- Sekiguchi, Y. and Hasenaka, T., Existence of felsic and mafic magmas representing pre-caldera stage of Aira caldera volcano in southern Kyushu, Japan. American Geophysical Union, Fall meeting, San Francisco, 2008.
- Miyoshi, M., Shimono, M., Hasenaka, T., Sano, T. and Fukuoka, T., Subduction influence of Philippine Sea plate on the mantle beneath Kyushu, SW Japan: An examination of boron contents in basaltic rocks. IAVCEI General Assembly, Reykjavik, Iceland, 2008.
- Miyoshi, M., Shimono, M., Hasenaka, T., Sano, T. and Fukuoka, T., Subduction influence of Philippine Sea plate on the mantle beneath Kyushu, SW Japan: An examination of boron contents in basaltic rocks. 18th Goldschmidt Conference, Vancouver, Canada, 2008.

- 下野まどか,三好雅也,長谷中利昭,福岡孝昭,佐野貴司,森康, 九州火山岩組成にみられる沈み込み成分の空間変化:島弧 下マントル組成へのフィリピン海プレートの寄与の度合い, 地球惑星科学関連学会,2008年合同大会,千葉幕張メッセ, 2008.
- 堀直之,三好雅也,長谷中利昭,阿蘇中岳北東麓に分布する玄武 岩質火砕流堆積物の岩石学的特徴,地球惑星科学関連学会, 2008年合同大会,千葉幕張メッセ,2008.
- 関口悠子,長谷中利昭,姶良カルデラ形成に至る前駆的なマグマ 活動:全岩化学組成および鉱物組成からの制約.日本地質 学会西日本支部総会,熊本大学,2008.
- 三好雅也,下野まどか,長谷中利昭,新村太郎,中部九州阿蘇地 域に分布する玄武岩類のホウ素含有量の時間変化.日本地 質学会西日本支部総会,熊本大学,2008.
- 関口悠子,長谷中利昭,長岡信治,姶良カルデラ形成に至る前駆 的なマグマ活動:マグマ混合の可能性,日本火山学会秋季大 会,岩手大学,2008.
- Miyoshi, M., Shimono, M., Hasenaka, T., Sano, T., Fukuoka, T., Furukawa, K., and Shinmura, T., The evolving fluid flux from the subducting plate beneath Aso area: evidence from Boron in volcanic products. Cities on Volcanoes 5, Shimabara, Japan, 2007.
- Shimono, M., Miyoshi, T., Fukuoka, T., M., Sano, T. and Hasenaka, T., Along-arc variation of Boron data: the influence of Philippine Sea plate on the composition of mantle beneath Kyushu, SW Japan arc. Cities on Volcanoes 5, Shimabara, Japan, 2007.
- Hasenaka, T., Morinaga, M. and Miyoshi, M., Kusasenrigahama pumice cone from Aso volcano, Kyushu, Japan: Petrological characteristics of pumice and coeval volcanic products representing one of the largest eruption after caldera-formation, Cities on Volcanoes 5, Shimabara, Japan, 2007.
- Sekiguchi, Y., Hasenaka, T., Nagaoka, S. and Mori, Y., The transition of magma supply system between 100 and 29 ka at Aira caldera in southern Kyushu. Cities on Volcanoes 5, Shimabara, Japan, 2007.
- Sekiguchi, Y., Hasenaka, T., Nagaoka, S. and Mori, Y., Precursory magma activities leading to Aira caldera-forming eruptions in southern kyushu, Japan, American Geophysical Union, Fall meeting, San Francisco, 2007.

JRR-3M, 即発ガンマ線分析装置, 地球科学

- 関口悠子,長谷中利昭,長岡信治,森康,姶良カルデラにおける 100-29ka のマグマ供給システムの変遷,火山都市国際会議 5,島原,2007.
- 三好雅也,下野まどか,長谷中利昭,佐野貴司,福岡孝昭,北部 九州玄武岩類中のホウ素含有量の時間的・空間的変化.日 本鉱物科学会,2007年度年会,東京大学,2007.
- Miyoshi, M., Shimono, M., Hasenaka, T., Sano, T. and Fukuoka, T., Determination of boron contents in volcanic rocks by prompt-gamma ray analysis: an application to magma genesis in Kyushu island, SW-Japan. 12th International Conference on Modern Trends in Activation Analysis (MTAA-12), Tokyo, Japan, 2007.
- Miyoshi, M., Shimono, M., Hasenaka, T., Sano, T., Fukuoka, T. and Shinmura, T., Temporal changes of the subduction components in volcanic products from Aso area, SW Japan. 17th Goldschmidt Conference, Koln, Germany, 2007.
- Shimono, M., Miyoshi, M., Fukuoka, T., Sano, T. and Hasenaka, T., The influence of Philippine Sea plate on the composition of mantle beneath Kyushu, SW Japan arc: Along-arc variation of B data. 17th Goldschmidt Conference (Koln, Germany, 2007.
- 奈須隆志,田島俊彦,森康,長谷中利昭,渋谷秀敏,長尾敬介, 北部九州に産する高マグネシア安山岩の K-Ar 年代.地球惑 星科学関連学会,2007 年合同大会,千葉幕張メッセ,2007.
- 関口悠子,長谷中利昭,長岡信治,森康,姶良カルデラにおける 100-29kaの噴出物の岩石学的特徴,地球惑星科学関連学会, 2007年合同大会,千葉幕張メッセ,2007.
- 森永麻衣子,長谷中利昭,三好雅也,森康,阿蘇草千里ヶ浜火山 噴出物の岩石学的特徴.地球惑星科学関連学会,2007年合 同大会,千葉幕張メッセ,2007.
- 三好雅也,新村太郎,荒川洋二,長谷中利昭,熊本県中部の木山 変成岩類-御船層群境界部から見出されたピクライト質玄 武岩.地球惑星科学関連学会,2007年合同大会,千葉幕張 メッセ,2007.

JRR-3M, 即発ガンマ線分析装置, 地球科学

This is a blank page.

4. 放射化分析

4. Neutron Activation Analyses

This is a blank page.

4-1

中性子放射化分析による宇宙・地球化学物質の研究(Ⅱ)

Studies on Cosmo-geochemical materials by neutron activation analysis (Ⅱ) 福岡孝昭¹、斉藤裕子²、石本光憲³、楠野葉瑠香¹、新藤智子¹、三浦亜由美¹、杉内由佳¹、

青木かおり¹、嶋田有里奈¹、宇野友則¹、田澤雄二¹

1立正大学地球環境科学部、2青山学院大学理工学部アイソトープ研究室、

"東京大学工学部大学開放研究室

Takaaki FUKUOKA¹. Yuko SAITO², Mitsunori ISHIMOTO³, Haruka KUSUNO¹, Tomomi SHINDO¹, Ayumi MIURA¹, Yuka SUGIUCHI¹, Kaori AOKI¹, Yurina SHIMADA¹,

Tomonori UNO¹ and Yuji TAZAWA¹

¹Faculty of Geo-environmental Science, Rissho University,

²Isotope Laboratory, Faculty of science and technology, Aoyama Gakuin University, ³The Inter-University Laboratory of the Joint Use of JAERI Facilities, the University of Tokyo.

I. はじめに

本研究は隕石、宇宙塵、火山灰、河川砂を試 料とし、宇宙化学、火山学、環境化学の分野の研 究を目的としている。ここでは、これらのうち、 隕石の落下年代測定に関連した研究、宇宙塵の降 下量についての研究、域秩父地方荒川上流域の地 球化学図作成についての研究について報告する。

II. 南極 HED 隕石のペアリング

II-1. はじめに

本研究の最終的な目的は、隕石の落下回数が 定常的であったか、ある時期に集中したか(隕石 の落下回数の時間変化)を知ることである。隕石 は母天体に他の隕石が衝突することで生じるの で、隕石の落下回数の時間変化は母天体におこっ た衝突の時期と関係すると考えられる。試料は、 南極で採集された HED 隕石(小惑星 Vesta が起源 だといわれている howardite、eucrite、diogenite 隕石の総称、以下南極 HED 隕石と呼ぶ)を用いる。 これまでに、47 個の南極 HED 隕石について落下年 代測定を目的に宇宙線生成核種である²⁶A1(半減 期7.1×10⁵年)を測定した。

ところで、隕石は大気圏突入時や地表面に衝 突したときにいくつかに壊れることがある。した がって、実際に隕石が落下した回数は採集された 数よりもずっと少ないと考えられる。本研究の目 的である隕石の落下回数の時間変化をみるには、 落下年代を求めた隕石試料について真の落下回 数を知る必要がある。そこで、隕石の「ペアリン グ」が必要になる。ペアリングとは、本来一個で ある隕石が地球に突入したときに複数に壊れて しまったもの同士を同定することである。ペアリ ングの手法として、隕石の鉱物の存在度、全岩ま たは鉱物の化学組成,宇宙線照射年代,採集地点 などの対比が用いられる。本研究では、²⁶A1 含有 量と主成分化学組成(Mg、Ca)によるペアリング を行ったので報告する。

II - 2. 本研究におけるペアリングの基準

本研究における²⁶A1、Mg、Ca含有量に基づいたペアリングの基準は以下の通りである。

[²⁶A1 含有量] ²⁶A1 の生成量は、地球に落下 した年代、宇宙線の標的になる元素組成、宇宙線 の照射条件などで変化する。したがって、同一の 隕石であれば²⁶A1 が生成される条件が同じなので その量は一定であると考えられる。ただし、同一 の隕石でも遮蔽効果などの照射条件で²⁶A1 含有量 に 15%程度のばらつきが生じることがあるので、 本研究では 15%の範囲内で一致したものをペアと した。

[主成分化学組成] HED 隕石の母天体は、溶融して分化しているので、場所によって化学組成が異なる。主成分元素のなかでは、Mg と Ca は分

化過程による含有量の変化がわかりやすい。本研 究では、Mg、Ca含有量が計数誤差(2 σ)範囲内 で一致したものをペアとした。

II - 3. 隕石の²⁶A1、Mg、Caの分析

隕石の²⁶A1 含有量は AMS(加速器質量分析) 法で測定を行った。AMS 法の試料精製法は Kusuno et al. (2007) に従った。AMS 法による²⁶A1 含有 量の測定は MALT (Micro Analysis Laboratory, the University of Tokyo) で行った。Mg、Ca 含 有量は INAA で分析した。中性子照射、γ線測定 は日本原子力研究機構 JRR-3M 炉内実験室で行っ た。

II - 4. 47 個の南極 HED 隕石のペアリング

8個の howardite 隕石、24 個の eucrite 隕石、 15 個の diogenite 隕石をそれぞれ、²⁶A1、 Mg、Ca 含有量、に基づいてペアリングを行った。最終的 に、本研究の結果に文献のペアリングデータを合 わせたペアリングを行った。

[howardite 隕石] 3 試料 (A: 26 Al 含有量が低い 試料、C: Mg に富んだ試料、D: Ca に富んだ試料) を除く5 試料については 26 Al、Mg、Ca 含有量では 同一のペアであることがわかった(図 II - 1)。 [eucrite 隕石] 26 Al 含有量に基づくと、2 つの ペアにわかれた。24 試料はどれも似た Ca、Mg 含 有量を示したので、 26 Al 含有量によるペアリング に基づき 2 ペア (A、B) とした(図 II - 2)。

本研究の結果に、鉱物組成、鉱物の化学組成、 ⁸¹Kr年代に基づいた文献のペアリングデータ

(Delaney et al., 1983; Takeda, 1991; Miura et al., 1993; NIPR, 1995) を合わせたところ(表 II -1)、最終的に7ペアになった。

[diogenite 隕石] 15 試料は主に、Mg に富んだ試料、Caに富んだ試料の2つにわけることができた。 1 試料だけが明らかに低い²⁶A1 含有量を示したの で、3 つ (A、B、C) に分類した (図 II - 3)。

本研究の結果に鉱物の存在度、鉱物の化学組 成に基づいた文献のペアリングデータ (Delaney et al., 1983; Takeda, 1991; NIPR, 1995) を合 わせると (表 II - 2)、最終的に 3 ペアになった。 II- 5.まとめ

47 個の南極 HED 隕石について ²⁶A1、Mg、Ca を利用したペアリングを行い、文献のペアリング データもふまえると最終的に 14 個のペアにわけ ることができた。本研究のペアリングの結果に隕 石の照射年代、遮蔽効果、微量元素組成などのデ ータを加えることで、より信頼性の高いペアリン グを決定することができると考えられる。この結 果から、落下回数の時間変化をみるには、統計上 100 個以上の隕石試料について落下年代を求める 必要があると考えられる。

図 II-1.²⁶A1、Mg、Ca 含有量に基づく南極 howardite 隕石のペア リング

8 個の南極 howardite 隕石は A、B、C、D に分類できる。

図 II-2. ²⁶A1、Mg、Ca 含有量に基づく南極 eucrite 隕石のペア リング 24 個の南極 eucrite 隕石は A、B に分類できる。A/B は A とも B

24 回の用意 eucrice 頃石はA、Dに力規できる。A/DはAともD ともつかないことを示す。

図 II-3. ²⁶Al、Mg、Ca 含有量に基づく南極 diogenite 隕石のペ アリング

15 個の南極 diogenite 隕石は A、B、C に分類できる。A/B は A と も B ともつかないことを示す。

meteorite	²⁶ Al, Ca,	Mineral	81 *3	*4
name	Mg content ^{*1}	Chemistry ^{*2}	Kr age	Lithology
Y-790122	A/B		\triangle	polymict
Y-790260	A/B	0	\bigtriangleup	polymict
Y-790266	А	0	\bigtriangleup	polymict
Y-791186	A/B		•	monomict
Y-74159	В	•	A	polymict
Y-74450	В	•	A	polymict
Y-75011	A/B	•		polymict
Y-75015	A/B	•		polymict
Y-790007	В	•	A	polymict
Y-790020	В	•		polymict
Y-793548	В	•	A	polymict
Y-792510	A/B		•	
Y-792769	A/B	\$	\bigtriangledown	polymict
Y-793164	В	\$	\bigtriangledown	
Y-791826	A/B		\diamond	
Y-791960	В		\diamond	
Y-82091	В		\diamond	
Y-793591	A/B			
Y-794002	В			
Y-82066	В			
Y-82082	A/B			
Y-793547	В			polymict
Y-794043	A/B		0	monomict
Y-791195	В			cumulate
*1	*1	*2	*4	

表 II-1. ²⁶Al、Mg、Ca、文献のペアリングに基づく南極 eucrite 隕石のペアリング

^{*1} This work. ^{*2} Takeda (1991). ^{*3} Miura et al. (1993). ^{*4} NIPR (1995)

表 II-2. ²⁶Al、Mg、Ca、文献のペアリングに基づく南極 diogenite 隕石のペアリング

Meteorite name	²⁶ Al, Ca, Mg content ^{*1}	Mineral Chemistry	Lithology*4
Y-791194	А		
Y-791199	A/B	a ^{*2,3}	Α
Y-791000	A/B	a ^{*2,3}	Α
Y-791422	В	a ^{*2,3}	Α
Y-791200	В	a ^{*2,3}	Α
Y-75032	В	a ^{*2,3}	Α
Y-74037	С	b*2	В
Y-74097	С	b*2	В
Y-74013	С	b ^{*2}	В
Y-74136	С	b ^{*2}	В
Y-692	С	a ^{*2,3}	
Y-74125	С	a ^{*2,3}	
Y-74010	С	a ^{*2,3}	
Y-74011	С	a ^{*2,3}	
Y-74648	С	a ^{*2,3}	

^{*1} This work. ^{*2} Takeda (1991). ^{*3} Delaney et al. (1983).

*4 NIPR (1995), A: characteristic granoblastic texture; B: characteristic intermediate composition between diogenites and eucrites. III. 南極ドーム Fuji 切削氷からの宇宙塵回収

地球外粒子である宇宙塵の起源は、主に彗星や 小惑星と考えられている。その宇宙塵の地球への 降下量は、年間 10⁴~10⁶ トンと言われている (Barker and Anders, 1968)。これだけ大量に降下 している宇宙塵が過去にどのような時間変化を していたかを求めることは太陽系の進化を知る 上では重要なテーマであり、過去に彗星や小惑星 の接近があった時期を知ることができる。ドーム Fuji では、地形上積もった雪が垂直に堆積してい る。そのため、氷床コアの長さから年代を追うこ とが可能である。ここでは、最終目的を達成する ための第一段階として宇宙塵を氷床から回収す ることを目的とした。ドーム Fuji コアは降下量 を求める上で有用な試料であるが、多くの古環境 情報を保持しているため、すべて用いることはで きない。そこで掘削時に同じ深度からかき出され る削りカスの塊である切削氷(深さ 1700m の約 40kg) を用いた。

切削氷には大量の地球起源粒子が含まれている(表Ⅲ-1)。これらと宇宙塵を効率よく分別しながら回収していくための回収法を考案した。

切削氷は国立極地研究所冷凍室(-20℃)で保管 されていた。これを粗く砕き、急激な氷の密度変 化で宇宙塵が壊れないように、立正大学のサンプ ル保管室(室温 3℃)でゆっくり自然融解させた。 融解水を穴径 8.0µm のポリカーボネートフィル ターで吸引ろ過した。この段階で掘削時に混入し た不凍液(酢酸ブチル)は水とともに除去された。 固形物の残ったフィルターを、水の入ったビーカ ーに入れ超音波洗浄器を用いて、固形物をフィル ターから剥離した。固形物をビーカー中でデカン テーションを 60、30、20 秒と3 回行い浮遊物(主 に繊維、木屑)を取り除いた。最後に10秒間のデ カンテーションを行い、沈降物と浮遊物をそれぞ れ回収した。宇宙塵は金属鉄を含んでいるため、 沈みやすいと考え沈降物からの回収を第一に試 みた。沈降物を比重3.3のヨウ化メチレンで重液 分離を行った後、磁性による分離(ハンドマグネ ットに着く:有、着かない:無)を行った。

表 III -	1.	本研究で回収し	たドーム	Fuji	切削氷中の	固体粒子の	種類。	と性質
---------	----	---------	------	------	-------	-------	-----	-----

	起源	比重	磁性1)	形状	サイズ	存在比(%)
宇宙塵(石質)	彗星·始原的隕石母天体	~2.2	有	不定形または	/1 mm	<1
	分化した隕石の母天体	~2.1	無?	球粒	×1mm	?
地球物質						
繊維	手袋·衣類	<1.0	無	繊維状	5–20mm	20
木くず・紙片	ダンボール・木箱	0.4-1.1	無	木片・紙切れ	1–15mm	30
スス・炭	発電機	0.4-1.0	無	球粒?不定形	<1mm-20mm	<1
亜鉛メッキ片	掘削ワイヤーのメッキ	7.1	無	薄板状	<5mm	10
鉄粒子	宇宙塵?・掘削機の破片	7.8	有	球粒または	<5mm	10
				薄板状		
砂粒	岩石(鉱物・ガラス)	1.9-2.3	大半は無	不定形?	<1mm	30
		5.2	有(磁鉄鉱)			
 1)磁石に付くか付; 	かないかで判断した.分化した宇	宙慶は不明				

宇宙塵が集まりやすいフラクションから宇宙塵 と思われる粒子を実体顕微鏡下でハンドピック した。

ハンドピックした粒子を SEM/EDS で形態観察と 定性分析を行った。Fe, Ni, Si, Mg, S が確認でき た粒子を INAA(機器中性子放射化分析)で親石元 素(Al, Ti, Ca, V, Mg, Cr, Mn, Na)、希土類元素(La, Sm, Eu, Yb, Lu, Sc)、親鉄元素(Ir, Fe, Co, Au)を 分析した。

Au と Ir は宇宙物質であるか否かを判定するの に重要な元素であるが、両方の元素を確認できた 試料がなく、かつ全体的に値が低い傾向となった。 ハンドピックした全ての粒子には SEM/EDS により 掘削ワイヤーのメッキに使われている Zn のピー クが確認できた。Au, Ir はこの Zn による汚染から 来た可能性も考えられる。したがって本研究で回 収・分析された粒子が宇宙塵であるという確証は 得られなかった。

以上、最終目的にはそれぞれ到達しなかったが、 基礎的な情報は得ることができた。今後も続けて いく計画である。 IV. 秩父、荒川上流域の地球化学図

IV-1 立正大学における地球化学図作り

地球化学図は地殻表層における元素の濃度 分布を示すもので、自然環境の化学的バックグラ ウンドの情報を得ることができ、人為的環境変化 を評価する上での指標となる。すなわち、地球化 学図から自然(地質)情報、資源としての情報、 環境汚染情報を得ることができる。

地球化学図の作成には、約1km²に1地点の 河川砂を採取し、種々の化学分析を行い、その分 析結果を元素ごとに地図化していく。

立正大学地球環境科学部宇宙地球化学研究 室では、2000年度から、埼玉県西部に位置する秩 父地方の荒川上流域(図IV-1)における地球化学 図を作成してきた。化学分析法としては蛍光 X 線 分析(XRF)、中性子放射化分析(INAA)、即発 γ 線分析(PGA)、レーザーアブレーション誘導結合 プラズマ質量分析(LA-ICP-MS)で合計 47 元素を 分析している(青木・他 2009)。

ここでは、2007~2009 年度に採取した 189 試 料を INAA で分析した結果を中心に報告する。 IV-2 結果と考察

IV-図 2 に Cr の地球化学図を XRF で得られた Mg と Ni の地球化学図とともに示した。<math>IV-図 3 に は Au、As、Sb の地球化学図を示した。これらの 地球化学図には 2006 年度以前の結果も含めて示 した。

IV-図2でわかるように、これら3元素の分 布は類似している。これら3元素は苦鉄質マグマ に多く含まれている元素で、この地域の地質図 (Ⅳ-図1)を詳細に見ると、これら3元素の濃度 が高い場所には苦鉄質溶岩がわずかであるが存

JRR-3、PN-1、PN-3、JRR-4、HR、Sパイプ、Tパイプ、放射化分析(宇宙・地球化学分野)

在している。すなわち地質情報を示している。

Au が最も高濃度である地点(図IV-3)は、か つて金が採鉱されていた場所(秩父鉱山)である。 注目すべきはAuの濃度が高いところはAs, Sbも 高濃度であることである。これら3元素が高濃度 である地域(秩父鉱山)は花崗岩マグマが貫入し た場所(図IV-1)であり、熱水鉱床として説明で きる。3元素は類似の挙動をとることがわかった。

環境情報として重要な Hg の分析法として INAA が最も優れていると考えられる。Hg はきわ めて揮発性が強い元素で、分析の過程で加熱する と容易に揮発して、少なくとも一部が失われてし まうので、正しい分析値を得ることが困難である。

INAA では原子炉で放射化する時に温度が上 がるが、密封されているので、Hg が揮発して失わ れることはない。INAA 用試料の前処理では加熱を いっさいせず、自然乾燥試料を分析に用いた。本 研究では、Hg を高濃度で含む Allende 隕石粉末を 標準試料とすべく、Hg 標準溶液を用いて値づけを 開始した。残念ながら(?)これまでのところ Hg を含む河川砂はまだ存在していない。 IV-3. 今後の地球化学図作り

立正大学における地球化学図作りは、荒川の 上流から中流域に移動してきている。この化学図 作りは今後も続ける計画である。立正大学が存在 する熊谷までは、まだかなりの距離がある。これ からは人為的な環境情報が得られるようになる かもしれない。人が多く居住する地域の試料採取 は、河川水の臭いが下水的になってきて、汚れた 水の中での試料採取は有難いことではない。

図IV-1. 荒川上流域の地質図と試料採取地点

4-1

謝辞 JRR-3M、PN-3 照射、γ線測定にあたって、原 子力機構の鬼澤孝治氏に多大なご協力を頂きま した。放射化された多くの試料のγ線測定にあた っては青山学院大学の永田恭子氏に大変お世話 になりました。本研究全体にわたって、東京大学 開放研究室の方々にお世話になりました。ここに 記してこれらの方々に深く感謝する次第です。	ンポジウム. 楠野葉瑠香、福岡孝昭、松崎浩之 (2009)「 ²⁶ A1 含有量による南極 のペアリング」第 11 回日本 AMS
成果の公表 新藤智子・福岡孝昭・青木かおり・石本光憲(2008) 「高濃度 Mg、Cr 地点の発見と Pb 人為汚染の可 能性-荒川上流薄川流域の地球化学図」2008 年度日本地球化学会第 55 回年会	
新藤智子・福岡孝昭(2007)「荒川上流中津川・ 河原沢川・赤平川流域の地球化学図」2007 年 度日本地球化学会第54回年会.	
三浦亜由美、宇野友則、福岡孝昭(2008)「ドー ム Fuji コア切削氷からの宇宙塵回収」平成 20 年度極域気水圏・生物圏合同シンポジウム.	
 H. Kusuno, T. Fukuoka, H. Kojima, H. Matsuzaki (2009) "Grouping of Yamato HED meteorites based on ²⁶Al contents." The Thirty-second 	
Symposium on Antarctic Meteorites. H. Kusuno, T. Fukuoka, H. Kojima, H. Matsuzaki (2009) "GROUPING OF YAMATO HED METEORITES BASED ON ²⁶ A1 CONTENTS AND CHEMICAL COMPOSITIONS " 72nd Appual Monting of the	
Meteoritical Society. 福岡孝昭・青木かおり・楠野葉瑠香 (2009)「奥 秩父荒川上流の地球化学図-立正大学での地	
球化学図作り」日本惑星科学連合 2009 年大会. 福岡孝昭・青木かおり・楠野葉瑠香 (2009)「河 床堆積物の化学分析に基づく地球化学図の作 成マニュアルと今後の展望」立正大学 地球環	
境研究、第 11 号、227-238. 楠野葉瑠香、福岡孝昭、松崎浩之、小島秀康 (2009)「 ²⁶ A1 含有量化学組成に基づいた南極や まと HED 隕石のペアリング」第 11 回日本 AMS シ	

JRR-3、PN-1、PN-3、JRR-4、HR、Sパイプ、Tパイプ、放射化分析(宇宙・地球化学分野)

と、小島秀康 亟やまと HED 隕石 IS シンポジウム.

4-2

中性子放射化分析法による隕石中の⁵³Mnの定量(Ⅱ)

Determination of ⁵³Mn in Meteorites by Neutron Activation Analysis (II) 首都大学東京大学院理工学研究科分子物質化学専攻 大浦泰嗣

1. はじめに

隕石は宇宙空間を飛行している間に宇宙線 の照射を受け、核反応によりさまざまな核種が生 成する.この生成物として、半減期が長い放射性 核種(¹⁰Be,²⁶A1,³⁶C1,⁵³Mn など)や希ガス安定核種 を宇宙線生成核種として隕石中で検出すること が可能である.これらの宇宙線生成核種を利用し て、宇宙線照射年代や、地球に落下した年代を得 ることができる.また、複数の核種の濃度から、 その隕石の落下前の大きさや、宇宙線照射環境を 推定することも可能である.

宇宙地球化学などに利用される半減期が 10 万年から 100 万年オーダーの宇宙線生成放射性核種 の多くは,加速器質量分析 (AMS) 法を用いて定量 されている.国内の AMS 施設では,¹⁰Be,¹⁴C,²⁶A1,³⁶C1 が測定可能であるが,⁵³Mn は国内では不可能 で,海外においても,⁵³Mn を測定可能な AMS 施設 は非常に限られている.

本研究は,AMS 法で測定できない宇宙線生成放 射性核種や,希ガス以外の宇宙線生成安定核種の 中で,中性子放射化分析法により定量可能な⁵³Mn と⁴⁵Sc に注目した.また,³⁶C1 を用いた研究に関 連して,分析試料の元素組成を中性子放射化分析 法により求めた.

2. マンガン (⁵³Mn, ⁵⁵Mn)

1836年にナミビア共和国で発見された鉄隕石 ギベオンは、総重量が26,000kg以上あり、この 隕石は宇宙空間で大きかったと予想できる.この 隕石中の宇宙線生成核種、¹⁰Be、²⁶A1、³⁶C1ならび に^{3,4}He が系統的に隕石表面から深部まで測定さ れているが、⁵³Mnのデータは少ない.最近、非常 に表面から深いと思われる試料が見つかったが、 高感度である希ガス同位体測定も限界に近く、核 破砕標的である鉄の質量数に近く、より生成率の 高い⁵³Mnの測定に期待がもたれる. そこで,放射化分析法により,これまでの定量 限界より低い極微量⁵³Mnを定量するための準備と して,前採択期間では,⁵³Mn 濃度が 196 dpm/kg から 8.3 dpm/kg までの 3 試料の定量を行った. 今期はより低濃度である 0.03 dpm/kg と予測され る濃度までの試料の分析を試みた.

鉄隕石試料を Mn 担体と C1 担体とともに溶解後, 塩素を AgC1 として分離した.この塩素フラクシ ョンは,加速器質量分析法による³⁶C1 の定量に供 した.塩素を分離した残りの溶液からイソプロピ ルエーテルによる溶媒抽出により鉄を除去した 後,陰イオン交換と陽イオン交換により Mn を精 製した.精製した Mn は A1 箔上に滴下・乾燥し, JRR-3 DR 孔にて中性子を1運転サイクル照射した. 照射後,陽イオン交換と陰イオン交換によりさら に精製した後,γ線を測定した. Mn の化学収率は, γ線測定試料を JRR-3 PN1 で3分間照射した再放 射化法により求めた.

本定量法は、55Mn(n, 2n)⁵⁴Mn反応の妨害を受ける. そのため、この妨害反応の寄与を小さくするために、Mn単体の量を従来の1/10である $10 \mu g$ として化学分離を行った. 担体量を減らしても収率良くMnを分離回収できることは54Mnトレーサーを用いて予め確認した.

⁵³Mn 濃度が 200 dpm/kg から 0.03dpm/kg である と推定される 6 試料の定量を行ったが, 1.1 dpm/kg 以下と推定される 4 試料は化学収率が 100%を大きく越え,定量できなかった.同時に行 った操作ブランクで検出された Mn は 0.04 μ g で あり,収率が 100%を越えた原因が操作中の汚染で ある可能性は低い.よって,鉄隕石に元々含まれ ていた Mn の影響が考えられる. Mn は地球化学的 親石元素であるため鉄隕石中の濃度は非常に低 いと考えられるが,正確な Mn 濃度はほとんど報 告されていない.最深部試料の ⁵³Mn 定量のために は,さらに Mn 担体量を減らす必要があるため,

JRR-3 DR, JRR-3 HR, JRR-3 PN1, JRR-3 PN3, JRR-4 Tパイプ, 放射化分析(宇宙化学的試料)

鉄隕石中に含まれている Mn 濃度を正確に知る必要がある.そこで,極微量⁵³Mnの正確な定量のために,鉄隕石中の Mn 濃度定量を開始した.

放射化分析法を含め機器分析法では,大量の鉄 マトリックスが極微量 Mn の定量を妨害するため, あらかじめ試料から Mn を定量的に分離する必要 がある.⁵³Mn 定量のための化学分離操作法は, Mn の化学収率が常に 100%では無かったため,定量的 に,かつ,操作中の Mn 汚染をできる限り小さく する事ができる新たな化学分離操作法を,藤本ら ¹⁾の方法を参考にして放射性トレーサ(⁵⁴Mn,⁵¹Cr, ⁵⁸Co)を用いて検討した.その結果,次の操作方法 とした.

試料をフッ酸に溶解後,2M HF 溶液として陽イオン交換樹脂カラム(8mL)に通す[鉄は吸着せず,Mn,Co,Ni は吸着する].水を流してカラム中のHFを流出させたのち,8M HC1 24mL でMn を溶離する[CoとNi も溶離される].このMn フラクションを蒸発乾固後,2-プロパノール-塩酸(1:2)混合溶液12mL に溶解し,陰イオン交換樹脂カラム(8mL)に通す[Ni は吸着しない].8M HC1 24mL でMn を溶利する[Coは溶離されない].

この方法を鉄隕石模擬試料(Fe+Ni+Co)に対して3回行った時のMn等の回収率を表1に示す.

				1 2/-3		
	Mn^{*1}	Co*1	Cr^{*1}	Fe^{*2}	Ni*2	
1	97	<0.1	<6.1	10. 5×10^{-5}	11	
2	103	<1.2	<5.5	9.9 $\times 10^{-5}$	32	
3	99	<1.2	<4.7	21. 6×10^{-5}	15	

表1 回収率[%]

*1 放射性トレーサによる測定

*2 ICP 発光分析による測定

3回の実験で常にMnを定量的に回収できたととも に、Feをほとんど除去できたが、数 10%の Ni を 除去できなかった.分離した Mn は INAA ($^{55}Mn(n,\gamma)$, ^{56}Mn)により定量することを計画してい る. $^{56}Fe(n,p)$, ^{56}Mn の妨害を低く抑えるため、Cd 比 の高い JRR-3 PN3 での照射が望ましい. PN3 で 5 分間照射すると、Mn の感度は 194 cps/µgMn、鉄 の妨害反応は最大で 2.0 cps/mgFe であった. Mn 濃度が 1ppb である鉄隕石を 1g 用いた時, この Fe の除去率で, JRR-3 PN3 で照射すると, Fe の妨害 は 1%程度となり, 十分 Mn を定量できるレベルま で Fe を除去できたと考えられる. Ni の除去が不 十分であったが, INAA では深刻な妨害にはならな いと予測される.

今後は, INAA において妨害する可能性のある他 の微量元素の除去率,操作ブランク,中性子照射 時の試料包装材のブランクを調べ, Mn の定量限界 を調べていく.

3. スカンジウム(⁴⁵Sc)

鉄隕石ギベオンは、現在までに、400 km にもお よぶ広範な地域から総計 21 トンの破片が見つか っている.本田らは、ギベオン隕石の破片を多数 収集し,希ガス同位体や1ºBeなどの宇宙線生成核 種濃度の系統性を調べた.その結果,希ガスを用 いた宇宙線照射年代により,破片を2グループに 分類できることがわかった.2 つの異なる照射年 代が得られる原因として, i)多段階照射を経験し た, ii)大気中の飛行時間が長かったため希ガス の一部が揮発した,の2つが考えられる.原因 ii) の希ガスの揮発の有無を調べるには、揮発しにく い宇宙線生成安定核種を調べてみればよい. 一般 に,石質隕石中の希ガス同位体以外の宇宙線生成 起源の安定核種は検出が困難である.しかし,鉄 隕石では,親石元素存在度が非常に小さいため, これらの同位体が宇宙線起源として検出されて いる. その中で,⁴⁵ScはWänkeにより初めて定量 され、その濃度は ⁴He 濃度とよい相関があること が報告されている. そこで, ギベオン隕石中の 45Sc 濃度を調べた.

ギベオン隕石の 8 個の破片(1~2g)の表面を希 硝酸で洗浄後,JRR-4 TBパイプにて1時間,また は、JRR-3 HR-1 孔にて2時間の中性子照射を行っ た.照射後,地球起源の Sc を十分除去するため に、さらに希硝酸で表面を洗浄した.スカンジウ ム担体とともに希硝酸で試料を溶解後,4M 塩酸溶 液とし、メチルイソブチルケトンにより鉄を溶媒 抽出により除去した.除去しきれなかった鉄をア スコルビン酸で Fe²⁺に還元後,TRU 樹脂(6 mL)を 用いた抽出クロマトグラム(4M HC1 で吸着,1M HC1 で溶離)により Sc を分離した.酒石酸スカンジウ 4-2 ムとしてガンマ線を測定後,重量法により化学収 率を求めた.なお,TRU 樹脂を用いた抽出クロマ トグラムでの元素の挙動は,予め放射性トレーサ を用いて調べた.図1に示す通り,抽出クロマト グラムにより,⁴⁶Scのy線測定を妨害すると考え られる Fe(II), Co, Ir から Sc を十分分離できる ことがわかる.

図1 Sc, Mn, Fe(II), Co, Irの塩酸系での抽出クロマ トグラム溶出挙動.

本研究で、0.0064 ppb~0.11 ppb の 45 Sc 濃度を 得た.図 2 に 4 He 濃度と 45 Sc 濃度の相関を、Honda at al.²⁾による 1 つのギベオン隕石とギベオン以 外の鉄隕石によるデータとともにに示した.本研 究では、異なる照射年代を示すギベオン隕石の破 片を用いた.図 2 で G1 と示した 2 つは 3×10⁸年

の照射年代を示す試料で,その他はG1よりも1/20 程度短い年代を示す試料(G2とする)である.45Sc と He の相関において,G1とG2に系統的な差は 見られず,G1とG2ともにギベオン以外の他の鉄 隕石で見られる相関とよく一致した.ギベオン隕 石に観測される照射年度の違いは少なくとも希 ガスの損失によるものではないと結論できる.

4. 塩素 (³⁶C1)

宇宙線生成核種の1つである³⁶C1(半減期30万 年)は、金属相中では主にFeやNiの核破砕反応に よって生成され、特に南極隕石の落下年代測定に 用いられている.また、ケイ酸塩相中ではFeとNi のほかにもKやCaなどの核破砕反応や、³⁵C1の中 性子捕獲反応によっても生成される.陽子による 核破砕反応の³⁶C1生成励起関数は標的元素ごとに 系統的に変化しているため、(n, y)反応も含め て隕石中での各元素からの³⁶C1生成率を求めるこ とで、宇宙線照射環境について深く議論できると 考えられる.そこで各標的元素ごとの³⁶C1生成率 を求めた.

Gold Basin隕石を2断片と、Gao隕石1断片を砕いて粉末状にし、磁石でケイ酸塩相と金属相に分離した.得られたケイ酸塩相はさらに硝酸で処理することにより酸可溶相と不溶相に分けて、各試料で6つの相を得た.これらの³⁶C1濃度を筑波大学タンデム型加速器を用いた加速器質量分析法により定量した.また、標的元素濃度を中性子放射化分析法(JRR-3 PN3 10秒ならびにJRR-3 HR孔 10分)と光量子放射化分析法により定量した.

どの隕石断片でも、ケイ酸塩の硝酸可溶相で ³⁶C1濃度が最も高かった.Welten et al.³⁾は、Gold Basin隕石15断片中の宇宙線生成核種濃度を報告 しているが、今回定量した³⁶C1 濃度はそれらと同 様の傾向を示した。Welten et al.はモデル計算 も用いて、核破砕反応と中性子捕獲反応からの 寄与をそれぞれ推定したが、本研究では³⁶C1が寄 与の大きなC1、(K + Ca)、(Fe + Ni)の元素群か らのみ生成されると仮定して、実験値のみから生 成率を推定した.得られた³⁶C1生成率は、Welten et 4-2 al.による核破砕反応と中性子捕獲反応の相関と ほぼ一致した.よって,本法による生成率の推定 値は妥当であると考えられる. (n, γ)による寄 与が系統的に少し高くなっている様でもあるが, 本法により得られる³⁶C1生成率の値は,C1 濃度に 大きく依存するので,より正確なC1濃度を求める 必要がある. 今後,Gold Basin隕石の新たな2断 片に対して同様に³⁶C1生成率を求め,照射環境の 推定を試みていく.

参考文献

 藤本・志村,分析化学 50,175-182 (2001).
 M. Honda et al., Proc. NIPR Symp. Antarct. Meteorites 1, 197 (1988).

3. K.C.Welten et al., Meteor. Planet. Sci. 38, 157-173(2003).

成果の公表

・石質隕石中の³⁶C1 生成率:大浦泰嗣,山崎俊 輔,橋詰二三雄,海老原充,戸崎裕貴,笹公和, 長島泰夫,高橋努,松四雄騎,玉理美智子,末木 敬介,松村宏,別所光太郎,三浦太一,第51回 放射化学討論会(2007)

• Cosmogenic Histries in Gibeon and Campo Del Cielo Iron Meteorites : M. Honda, K. Nagao, K. Bajo, H. Nagai, Y. Oura, K. Nishiizumi, 71st Annual Meetings of the Meteoritical Society(2008)

・鉄隕石中の宇宙線生成核種⁴⁵Sc:大浦泰嗣,本 田雅健,海老原充,2009年日本地球化学会年会 (2009)

・石質隕石中の³⁶C1 生成率(II):浜中芳文,大浦 泰嗣,海老原充,笹公和,長島泰夫,高橋努,戸 崎裕貴,松四雄騎,玉理美智子,天野孝洋,末木 啓介,別所光太郎,木下哲一,2009 日本放射化学 会年会・第53 回放射化学討論会(2009).

• Cosmogenic ⁴⁵Sc in Gibeon Iron Meteorite by Radioanalytical Neutron Activation Analysis : Y. Oura, M. Honda, M. Ebihara, Asia-Pacific Symposium on Radiochemistry 2009 (2009).

• Irradiation Histories of IronMeteorites: M.

Honda, H. Nagai, K. Nagao, K. Bajo, N. Takaoka, Y. Oura, and K. Nishiizum, Journal of the Physical Society of Japan 78, Suppl.A, 12-17 (2009). 4-2 4-3

地圏環境における元素分布・循環の研究(IV) —同位体希釈放射化分析による白金族元素とレニウムの高確度定量—

武田匡樹 (TAKEDA Masaki)¹⁾・田中 剛(TANAKA Tsuyoshi)¹⁾・南 雅代(MINAMI Masayo)¹⁾・ 浅原良浩(ASAHARA Yoshihiro)¹⁾・鈴木和博(SUZUKI Kazuhiro)¹⁾・林 和樹(HAYASHI Kazuki) ¹⁾・田中浩史(TANAKA Hiroshi)¹⁾

1) 名古屋大学大学院環境学研究科地球環境科学専攻, 464-8601 名古屋市千種区不老町 Graduate School of Environmental Studies, Nagoya University, Chikusa, Nagoya 464-8601, Japan

Abstract

Iridium and osmium in several rock reference materials (peridotite (JP-1), basalt (JB-1b, JB-2 and JB-3), andesite (JA-1 and JA-2), granite (JG-1a, JG-2 and JG-3)) and in some igneous rocks were analyzed with newly developed isotope diluted neutron activation analysis (ID-NAA). The ID-NAA was combined with isotope dilution method, NiS-fire assay procedure and traditional NAA. A total procedural blank for iridium was 0.0150 ± 0.0005 ng and for osmium was less than 1.0 ng. Various amounts of enriched ¹⁹³Ir and ¹⁸⁴Os isotopes were spiked in a peridotite JP-1. The obtained results agreed well with each other and with the values of previous works (Ir: 2.97±0.28ppb, 1 σ , n=4, Os: 4.07±0.45ppb, 1 σ , n=4). In the NiS-fire assay step it was concluded that natural Ir and Os had been experienced isotopic equilibrium with spiked enriched isotope. Then the ID-NAA was useful for determination of trace iridium and osmium in crustal rocks. 19 crustal rocks including 5 intermediate to felsic rock reference samples were determined for their iridium and osmium abundances.

JRR-3, JRR-4, Sパイプ, Tパイプ, 気送管, 放射化分析(環境試料, 岩石試料, 白金族元素, イリジウム, オスミウム)

1. はじめに

白金族元素(Ir, Os, Ru, Rh, Pd,) は希土類元 素やCs、Baなど地殻に濃集しやすい親石元 素の対極にある親鉄元素として核やマント ルの形成過程などの地球化学的研究におい て非常に重要である。しかし白金族元素は 隕石やマントル物質などへの応用例は多い ものの含有量が少ない地殻物質へ応用した 研究はほとんどない。白金族元素の定量法 には INAA、RNAA、ID-ICPMS などがよく用い られており、特に peridotite のようなマン トル起源物質は同手法でよく測定されてお り、3つの定量法間での Ir、0s 濃度の測定 値もほぼ一致した結果が得られている (e.g. Ebihara 1994 Shinotsuka et al 2003, Shirai et al 2003, Meisei et al 2004). 一方地殻物質である basalt や granite では 主に RNAA によって、いくらかの岩石標準試 料で PGEs の定量が行われている。RNAA は通 常の INAA よりも長時間中性子照射し、その 後のいくつかの化学分離を経ることにより、 目的元素の分析感度は非常に高いという長 所をもつ。しかし、長時間照射をすること により、目的としない元素からの強い放射 線による被爆というリスクがかなり高い点、 煩雑な化学分離が要求される点が短所とし てあげられる。また、地殻物質のように比 較的不均質性の高い物質の全岩濃度を代表 するには、どうしても、数十~100g 程度の 岩石試料を用いなければならない。しかし 伝統的に行われてきた定量法では上記の条 件を満たす定量は困難であった。このよう なことから、地殻物質中の白金族元素の定 量に関して、安全性と簡便さを兼ね備えた、 高確度・高精度な定量法が望まれていた。 本研究では新しく、伝統的な INAA と同位体 希釈法を組み合わせた、同位体希釈中性子 放射化分析法(isotope diluted neutron activation analysis)を開発し地殻物質中

の Ir、Os の定量を試みた。伝統的な INAA(Rovert et al 1971, McDonald et al 1994)では NiS-fire assay を用いることで 使用できる岩石試料を数十 g~100g と大き くすることができる。PGEs の濃縮法である 古典的 NiS-fire assay では常に、定量的な PGEs の回収率が必要とされるが、本定量法 ではこの濃縮段階に白金族元素の濃縮同位 体を添加し同位体希釈法を用いることで、 回収率を補正することが可能となった。同 位体希釈中性子放射化分析法では 1) 岩石 試料を一度に数十~100g 程度用いることが できる、2)RNAA のような長時間の中性子照 射後の放射線被爆のリスクが低い、3)RNAA や ICP-MS で行われるような複雑な化学分離 を必要としない、という利点を兼ね備えて いることになる。本研究では fire-assay 時 に濃縮同位体を添加することでその後の化 学操作を通常の INAA に準ずる同位体希釈中 性子放射化分析法を確立し、地殻物質中に 偏在する極微量なの Ir、0s の高確度定量を 試みた。本手法で最も重要なのは、試料中 の白金族元素が添加した濃縮同位体と fire assay の溶融時に同位体平衡を経験するか ということである。本研究では異なった試 料/スパイク比に調製した岩石標準試料を 繰り返し測定し、それぞれで Ir,0s 濃度の 同一の定量結果を得ることで同位体平衡の 有無を確認した。また19の地殻物質につい て Ir の濃度と一部の試料において 0s の濃 度の定量に成功した。

2. 分析法

2-1 同位体希釈中性子放射化分析法の原 理

Masumoto (1982) では光量子放射化分析法を 用い、2 種の Sr 安定同位体を放射化しこれ 4-3

らの放射能強度比と比較標準物質の放射能 強度比との比をとることにより、Sr の定量 を行った。本手法は Tanaka et al (2002) に よる白金族元素に対する ID-NAA に基づく。 天然試料量/スパイク比を変えた比較標準 物質 4~5 試料を未知 sample と同時に照射 することで、標的とする二つの放射性同位 体の放射能強度比と Wnat/Wsn(Wnat: 天然試料 量 W_{sn}:添加 spike 量)とをプロットしキャ リブレーションカーブを作成した。このカ ーブをもとに、試料の白金族元素含有量を 算出した。しかし、二つの放射性同位体が もつ半減期は核種によって異なるため、同 じ試料であっても時間と共にその比は変化 してしまう。つまり各比較標準試料に対し ある時間での放射能強度比を用いなければ ならないため、時間補正した値が必要とな る。本手法では初生放射能強度比、つまり 比較標準試料が中性子照射された直後の放 射能強度比を用いた。初生強度比と W_{nat}/W_{sp} は以下の関係にある。

 $\frac{\dot{A}}{B} = \frac{(W_{nat}/W_{sp}) \times (Atw_{p}/Atw_{nat}) \times Ab_{A.nat} + Ab_{A.sp}}{(W_{nat}/W_{sp}) \times (Atw_{p}/Atw_{nat}) \times Ab_{B.nat} + Ab_{B.sp}} \times C$ $\cdots (1)$

$$C = \frac{E_{\alpha}I_{R,\alpha}}{E_{\beta}I_{R,\beta}} \times \frac{\sigma_{A}\lambda_{B}}{\sigma_{B}\lambda_{A}} \times \frac{(1 - e^{-\lambda_{A} \cdot t})}{(1 - e^{-\lambda_{B} \cdot t})} \quad \cdot \quad \cdot \quad (2)$$

(1) 式において、A', B' は初生放射能強 度を表す。 W_{nat} , W_{sp} , は天然試料量およびスパ イク添加量を、Atw_{nat}, Atw_{sp}は natural、spike の原子量を示す。Ab_A, Ab_B は放射化される二 つの同位体 A, B の同位体組成を示す。(2) 式において E は Ge 検出器の検出効率、I_Rは γ 線放出率、 σ は核反応断面積、 λ は壞変 定数、t は中性子照射時間を表すが試料と標 準試料を同時に照射することでキャンセル される。

2-2 NiS-fire assay

基本的な手法は Robert et al (1971)、およ び McDonald et al (1994)に従った。Powder 状の岩石試料 20~50g に対して Na₂CO₃、 Na₂B₄O₇をそれぞれ 30、60g 用いた。S と Ni はそれぞれ 1.0 および 2.0g 用いた。Ni 試薬 中には不純物として Ir や 0s が入っている 可能性が報告されているため、試薬の Blank 値を低くする意味でもSとNiの量は出来る だけ少なくした。本手法では fire assay 時 に Ir および 0s の濃縮同位体も同時に添加 している。これら濃縮同位体はまず 2cm× $2cm 程のカバーガラス状に数<math>\mu$ ~数 $+\mu 1 を$ ピペッティングした後、60℃で乾燥させる。 乾燥後はカバーガラスごと上記の試料、試 薬とともに素焼きの磁性るつぼに入れられ る。溶融時間は Li and Ebihara (2002) に従 い、850℃で30分溶融した後、1000℃で90 分溶融した。坩堝を冷やした後坩堝を破壊 し、底部に生成された NiS bead を回収した。 加えられたNiとSに対するNiSの回収率は 約80%程度であった。

回収された NiS bead は細かく砕かれた後、 120℃下、200~300mlの12NHClで溶解させた。その後 PTFE membrane filterで濾過した。濾過後 HF、蒸留水の順に流し、トラップされた残さを濾紙ごと回収した。回収された濾紙は乾燥させた後石英管に入れ封入し、中性子照射を行った。

2-3 中性子照射

中性子照射は日本原子力研究開発機構 (JAEA)の原子炉、JRR-3のHR-1、HR-2およ びJRR-4のSパイプで行った。各原子炉の thermal neutron flux はそれぞれ 9.6×10²³ (n/cm²・s)、4.0×10²³ (n/cm²・s) である。 照射時間は両原子炉ともに 6 時間である。

冷却時間が4日の場合は名古屋大学 RI セン ターでγ線測定を行い、冷却時間が1日の 場合は日本原子力研究開発機構でγ線測定 を行った。測定した各放射性核種の核デー タを Table1. に示す。

Table 1 Summary of nuclear data for Ir and Os

Element	Reaction	Cross section, barns	Half-life	Energy, keV
Iridium	191 Ir(n, γ) 192 Ir	300	74.4d	316.5
	¹⁹³ Ir(n, y) ¹⁹⁴ Ir	112.5	19.7h	328.0
Osmium	124Os(n, y)125Os	<200	93.6d	645.8
	191Os(n, y)192Os	6	14.6d	129.4

2-4 試薬

2-4-1 標準試薬

Ir、Os ともに Johnson Matthey company の plasma standard solutionSpecpure^R を使用 した。また PGEs multi elemental standard と し て Johnson Matthey company の Precious metals plasma standard solution を使用した (PGEs の濃度はそれぞれ 100 μ g/ml)。

Ir の濃縮同位体として¹⁹³Ir(94.7%)濃縮同 位体を、0s の濃縮同位体として¹⁸⁴Os(5.45%) 濃縮同位体を使用した。

2-4-2 キャリブレーション試薬

calibration 試薬は Ir に関しては測定試料 中の含有量によって Ir の多い試料用の pattern1 と Ir の少ない試料用の pattern2 の2種類をそれぞれ 4~6 試料調製し、0s に 関しては1種類、6 試料調製した。それぞれ の元素についての natural standard と spike solution の混合比を Table. 2 に示す。

Table 2 W/W, ratio of calibration reagents for Ir and Os

Ir			1	2	3	٩	5	6
	mixture 1'	W,(µg)	13.5	13.5	13.5	6.8	6.8	6.8
		W.(µg)	2.0	4.0	8.0	6.0	9.0	15.0
		W./W,	0.1	0.3	0.6	0.9	1.3	2.2
	mixture 2'	W,(µg)	36.8	36.8	36.8	36.8		
		W_(µg)	0.4	0.8	1.5	4.0		
		W./W,	0.01	0.02	0.04	0.11		
Os		- 1º	1	2	3	۵	5	6
		W,(µg)	1.4	1.4	0.7	0.7	0.7	0.7
		W.(µg)	5.0	10.0	10.0	20.0	40.0	80.0
		W/W	3.7	7.4	14.7	29.4	58.8	117.6

mixture 1 and 2 is used for Ir-rich samples and Ir-poor samples, respectively

石英管に SiO₂を入れ、まず Ir calibration standard を SiO₂にしみ込ませ、80℃で乾燥 させる。その後 H₂SO₃をしみ込ませる。これ は次に入れる 0s が 0sO₄に酸化しやすく、ま たこの 0sO₄が揮発しやすいため、石英管内 を還元状態するためである。H₂SO₃を乾燥後、 Os calibration standard、PGEs standard をしみ込ませ、60℃で乾燥させる。再び H₂SO₃ をしみ込ませ、還元状態にしたのち、乾燥 後直ちに石英管を封入する。

3 結果・考察

3-1 ブランク

Blank 試料を調製するにあたり、岩石試料を 用いることができない。一方、シリカ成分 (Si0₂)がないと溶融の際に坩堝が浸食され てしまうため fire assay がうまくいかない。 よって岩石試料の代わりに純 Si0₂ 試薬を加 えた。Blank 試料は4 試料準備し、それぞれ で Si0₂の量のみ20gから5gずつ変化させた。 γ 線測定までの実験の流れは岩石試料測定 時のものに準ずる。その結果 Si0₂ の量と Blank 値との相関は見られなかったため、4 試料の結果の平均値を本手法での blank 値 とした。その結果、Ir は 0.015±0.0005 ng(n=4, 1 σ)となった。

Ir、Os それぞれのキャリブレーションカー ブを Fig. 1、Fig. 2に示す。キャリブレー ションカーブは元素ごとに、また使用する 濃縮同位体の同位体組成によってその形状 が変化する。

Fig. 1 Typical calibration curve for iridium.

Fig. 2 Typical calibration curve for osmium

3-3 標準岩石試料の繰り返し測定

3-3-1 peridotite(JP-1)

測定には北海道幌満のかんらん岩(ダナイト) 試料を 20g 用いた。本測定では 1) 本定

量法での繰り返し精度を議論する 2)濃縮同 位体の添加量を複数試料で変えることで fire assay 時の同位体平衡の達成度合を議 論することを目的とした。そのため 4 試料 の繰り返し測定を行った。Ir、Os の測定結 果をFig. 3, Fig. 4, Table 4, Table 5 に 示す。Ir、Os 共に ICP-MS での reference と ほぼ一致しており、繰り返し測定による試 料間のばらつきも同程度であることが分か る。さらに一度に使用した試料の量が他の reference では数 g 程度に対し、本手法による値が 全岩濃度としてより確度が高いと考えられ る。

また natural PGEs/spiked PGEs の量比を変 化させても、各試料間でほぼ同程度の値が 得られていることから、fire assay の段階 で添加した濃縮同位体と岩石中の元素とが 溶融の際に同位体平衡を経験していること が明らかになった。

Figure 3

Analytical results of Ir concentration and reference data for JP-1. *Solid circles* indicate four repetitions performed in this work. *Large solid circle* indicates average of the four repetitions. *Open triangle, solid triangle, open square, solid square, and open diamond* indicate data of References 1, 2, 3, 4, and 5, respectively.

Figure 4

Analytical results of 0s concentration and reference data for JP-1. *Solid circles* indicate four repetitions performed in this works. *Large solid circle* indicates average of the four repetitions. *Open triangle, solid triangle, open square, solid square, and open diamond* indicate data of References 1, 2, 3, 4, and 5, respectively.

3-3-2 Basalt(JB-1b)

測定には長崎県佐世保の玄武岩試料 (JB-1b)を50g用いた。5 試料の繰り返し 測定を行った。Ir の測定結果を Fig. 5, Table 5 に示す。

Figure 5

Analytical results of Ir concentration

for JB-1b and reference data for JB-1b and BCR-1. Solid circles indicate five repetitions performed in this work. Large solid circle indicates average of the five repetitions. Open triangle, solid triangle, and open square indicate data of References 13 and 14 for JB-1a and 15 for JB-1, respectively. Solid square, open diamond, solid diamond and x point indicate References 16, 17, 18, and 19, respectively.

Ir 濃度はかなりばらつきがあった。USGS 発 行の玄武岩の岩石標準試料 BCR-1 について は RNAA によって多くのグループが Ir 濃度 を定量している。Oddone et al (1990) では4 回の繰り返し測定において Ir 濃度が 0.0056 ±0.0007Ir と高精度、高確度で測定されて いる。また彼らは使用した岩石試料の量が 500mg と非常に少ないのにも関わらず試料 間のばらつきが非常に少ない。本研究では 彼らの手法に比べて 100 倍の量の岩石試料 を用いたのにも関わらず Ir 濃度の試料間の ばらつきが非常に大きかった。BCR は洪水玄 武岩といわれ、大量の玄武岩質溶岩が流れ 出して生じた玄武岩であり、その玄武岩質 溶岩の粘性は普通の玄武岩に比べ、極めて 低い。また RCR-1 の調製においてふるいを かけ、粒径がある程度そろえられているこ とからも他の玄武岩に比べ、元素の均質度 は高いと考えられる。JB-1bの Ir 濃度のば らつきの原因として1)Irは少数の硫化鉱物 に濃集しているため不均質性が高い、 2) fire assay の溶融状態は岩石によって異 なり、JP-1 の条件と同じ条件では溶融がう まくいかないという2点が考えられる。

3-3-3 granite (JG-1a, JG-3)

測定には群馬県沢入(JG-1a)、島根県三刀屋 4-3 (JG-3)の花崗閃緑岩を 50g 用いた。それぞ れ 5 試料の繰り返し測定を行った。Ir の測 定結果を Fig. 6, Table 6 に示す。 見ることができることから、RNAA の測定結 果と同程度の結果得られたことが本手法に おいて明らかになった。

4-3

Figure 6

Analytical results of Ir concentration for JG-1a and JG-3 and reference data for JG-1a, JG-3, G-1 and G-2. Solid circles indicate four repetitions performed in this works for JG-1a. Large solid circle indicates average of the four repetitions. Solid triangles indicate four repetitions for JG-3. Large solid triangle indicates average of the four repetitions. a, b, and c indicate data of References 13, 14, and 20, respectively, for JG-1a. d and e indicate data of References 13 and 14, respectively, for JG-3. **f** and **g** indicate data of References 21 and 17, respectively, for G-1. h, i, and j indicate data of References 22, 21, and 17, respectively, for G-2.

JG-1a、JG-3 共に reference となる値がほと んど存在しない。Arai et al (1988)、Kimura and Arai (1989) 、 Plessen and Erzinger (1999)のデータがあるのみである。 また彼らは繰り返し測定を行っていないた め、本研究の繰り返し測定による平均値を そのまま比較することができないが、 M. Oddone et al (1985)のUSGS, G-1のgranite のデータと比較すると繰り返し測定による ばらつきが JG-1a に関してはほぼ同程度と

		conc(ppb, 1o)	number of analysis	analytical method	reference
JP-1	This work	2.97±0.28	4		
	previous works				
JP-1	prev. 1	4.07±0.13	1	RNAA	1
	prev. 2	2.73-6.10	2	RNAA	2
	prev. 3	3.40±0.32	3	Te coprecipitation-fire assay, ICP-MS	3
	prev. 4	3.31±0.22	5	fire assay, ICP-MS	4
	prev. 5	2.47±0.20	8	ID-ICPMS	5

Table 3 Analytical results of Ir concentration and reference data for JP-1

<i>a</i> .		conc(ppb, 1o)	number of analysis	analytical method	reference
JP-1	This work	4.07±0.45	4		
	previous works				
JP-1	prev. 1	12.8±0.80	1	RNAA	1
	prev. 2	4-10	2	RNAA	2
	prev. 3	3.44±0.52	3	Te coprecipitation-fire assay, ICP-MS	3
	prev. 4	4.01±0.50	5	fire assay, ICP-MS	4
	prev. 5	3.78±0.72	8	ID-ICPMS	5
					4-3

		conc(ppt, 1s)	number of analysis	analytical method	sample massive	reference
JB-1b	This work	53.6±39.2	5		50g	
	previous works					
JB-1	prev. 1	1-20	n.d.		n.d.	13
JB-1a	prev. 2	18.2	n.d.	RNAA	n.d.	14
	prev. 3	28	n.d.	RNAA	n.d.	15
BCR-1	prev. 4	35±10	1	RNAA	200mg	16
	prev. 5	5.3±0.6	3<	RNAA	300mg∽2g	17
	prev. 6	3	1	RNAA	200mg	18
	prev. 7	5.6±0.7	4	RNAA	500mg	19

Table 5 Analytical results of Ir	concentration for JB-1b	and reference data for JB-1	, JB-1a and BCR-1

n.d. means no data

Table 6 Analytical results of Ir concentration for JG-1a and JG-3, and reference data for JG-1a, JG-3, G-1 and G-2

		conc(ppt, 16)	number of analysis	analytical method	sample massive	reference
JG-1a	This work	7.3±3.9	5		50g	
JG-3	This work	13.3±2.3	5		50g	
	previous works					
JG-1a	prev. 1	2200	n.d	RNAA	n.d.	13
	prev. 2	3100	n.d	RNAA	n,d,	14
	prev. 3	<50	n.d.		n.d.	20
JG-3	prev. 4	1.2	n.d	RNAA	n.d	13
	prev. 5	2	n.d.	RNAA	n.d.	14
G-1	prev. 6	8-44	n.d.	n.d.	n.d.	21
	prev. 7	9±1	<3	RNAA	300mg∽2g	17
G-2	prev. 8	70	1	n.d.	n,d.	22
	prev. 9	2-120	n.d.	n.d.	n.d.	21
	prev. 10	68±5	<3	RNAA	300mg∽2g	17
n.d. mean	ns no data					4-3

3-4 さまざまな地殻物質への応用

3-4-1 分析試料

使用した地殻物質は以下のとおりである。 玄武岩として、伊豆大島の tholeiitic basalt (JB-2)、山梨県鳴沢村、秋田県森吉 山のhigh alumina basalt (JB-3, 990929R1)、 秋田県男鹿半島寒風山の alkaline basalt (971111KA1)を用いた。花崗岩として、岐

阜県苗木の biotite granite (JG-2)、愛知 県岡崎の biotite granite (Bu94052603)、 biotite-muscovite granite (94052601A, 94052601B) muscovite-biotite granite (94052605), 岩手県釜石の granodiorite (kurihashi)、 オーストラリア南東部の S-type granite (MA88032514, MA88032503), I-type granite (MA88032509, MA88032512)、安山岩として、 神奈川県箱根山の basaltic andesite (IA-1a)、香川県坂出の olivine andesite (JA-2)、長野県蓼科山の basaltic and esite (97072402)、長野県御岳山の andesite (T95071101)、長野県八ヶ岳の andesite (970724003) を用いた。JB-2、JA-2、JG-2 に関しては岩石粉末試料として 20g 用い、 残りの岩石試料についてはそれぞれ粉末試 料 50g ずつを用いた。

3-4-2 Ir の測定結果

測定結果を Fig. 7, Fig. 8, Fig. 9, Table 7 に示した。全体的に、玄武岩の Ir 濃度は 安山岩や花崗岩に比べ、数十 ppt 程度と高 いということが分かる。これは繰り返し測 定を行った、JB-1a の Ir 濃度が 53.6± 39.2(n=5, 1 σ) と高かったこととよく一致 している。また安山岩の Ir 濃度は低く花崗 岩の Ir 濃度とほぼ同じ値を示した。S-type 花崗岩と I-type 花崗岩において Ir 濃度に 若干の差異は見られるが、花崗岩の繰り返 し精度から考えると、両者で特に差異はな い と 見 る の が 妥 当 で あ る 。

Figure 7

Analytical results of Ir concentration for several basalts including JB-1b. The light and dark gray bars are the distribution of Ir concentration in andesite and granite, which are shown in Figures 8 and 9, respectively.

Figure 8

Analytical results of Ir concentration for several andesites. The light and dark gray bars are the distribution of Ir concentration in basalt and granite, which are shown in Figures 7 and 9, respectively.

Figure 9

Analytical results of Ir concentration for several granites. The light and dark gray bars are the distribution of Ir concentration in basalt and andesite, which are shown in Figures 7 and 8, respectively. JG-1a and JG-3 were measured repeatedly in this work.

先に示した IG-1a、IG-3 の定量結果と IG-2 の定量結果を比較すると、JG-2<JG-1a< JG-3 の順で Ir 濃度に差異が見られる。Ir と同じ親鉄元素である Ni、Cr との相関図を Fig. 10, Fig. 11 に示す。Ni および Cr の 濃度は日本地質調査所岩石標準試料データ ベースから引用した。Fig. 10, Fig 11 に示 されるように Ir 濃度は Ni、Cr 濃度と正の 相関を示すことがわかる。このことから本 源マグマからの Ir の分配は IG-1a、IG-2、 JG-3 では同程度であることがわかる。 愛知県の武節花崗岩の4試料は Ir 濃度が顕 著に高く、玄武岩と同程度の Ir 濃度を示し た。これは他の花崗岩では見られず、武節 花崗岩にのみ見られた。Matsumura(1995)に よる武節花崗岩の SiO₂, Mg, Ni, Cr, Fe 濃度の 測定結果と岩石標準試料の JG-1, JG-2, JG-3 のこれらの元素濃度を Table 8 に示した。 Ir の含有量がマグマの分化の違いによって 依存するもので Cr、Ni、Fe に代表される親

鉄元素の含有量と関連があると考えると、 武節花崗岩4試料の親鉄元素の濃度は他の3 種の岩石標準試料のものより、遥かに高い ことが期待される。しかし、Table 8 で示す 通り、武節花崗岩の親鉄元素の濃度は多少 の差異は見られるものの、今回の測定結果 が示すような Ir の高濃集を説明する程度の ものではないことが分かる。この結果から 武節花崗岩は他の花崗岩とは異なる起源を もつことが示唆される。例えば、マントル に高濃度に濃集する白金族元素がマグマに よって運ばれる際に、何らかの理由により 結晶分化作用によってかんらん岩やはんれ い岩などに分配されずにそのまま地殻表面 まで上昇してくる可能性を考えると、本研 究の結果のように Ir の高濃集がおこること も考えられる。また、Palme and Wlozka(1976) では白金族元素が C3V chondritic meteorites $\oplus \mathcal{O}$ refractory inclusion 中の金属、硫黄相中に極端に富む ことが報告されている。もしこのような inclusion がそのままの状態でマントル中 に存在するとマグマが冷えて固まる際にこ の inclusion が取り込まれ、Ir の高濃集が 起こることも考えられる。さらに Ishihara(1977) 武節花崗岩の成因につい てでは地殻物質の深部で発生したマグマが 上昇過程で堆積岩と反応して出来たのでは ないかと述べている。武節花崗岩周辺の堆 積岩に Ir を高濃集したような堆積層が存在 するのであれば、マグマの上昇過程でこの 層を取り込んだ結果、Ir が高濃集したと考 えることも出来る。

	rock type	sample name	conc. Ir(ppt)	conc. Os(ppt)
basalt	tholeiitic basalt	JB-2	10.5±0.4	n.a.
	high almina basalt	JB-3	39.2±1.4	n.a.
	high almina basalt	990929R1	22.6±0.5	25.6±2.7
	alkaline basalt	971111KA1	35.5±0.5	77.3±5.5
andesite	basaltic andesite	JA-1a	5.0±0.8	n.a.
	olivine andesite	JA-2	0.7±0.1	32.9±4.3
	basaltic andesite	97072402	2.2±0.1	n.a.
	andesite	97072403	2.5±0.1	n.a.
	andesite	T95071101	2.0±0.1	n.a.
granite	biotite granite	JG-2	0.7±0.1	n.a.
	biotite-muscovite granite	Bu94052601B	33.9±2.9	n.a.
	biotite granite	Bu94052603	23.5±1.6	22.9±2.3
	muscovite-biotite granite	Bu94052605	16.2±0.7	84.5±15.2
	biotite-muscovite granite	Bu94052601A	26.0±3.4	n.a.
	s-type granite	MA88032514	7.4±0.2	n.a.
	s-type granite	MA88032503	6.6±0.1	n.a.
	I-type granite	MA88032509	4.7±0.1	n.a.
	I-type granite	MA88032512	1.9±0.1	n.a.
	granodiorite	Kurihashi	6.6±0.1	14.5±4

Table 7 Analytical results of Ir and Os concentration for 19 crustal rocks including 5 reference rocks

n.a. means not analysis

*JB-2 is basalt in Izu-oshima.

JB-3 is basalt in Narusawa, Yamanashi prefecture, Japan.

990929R1 is basalt in Mt. Moriyoshi, Akita prefecture, Japan.

971111KA1 is basalt in Mt. Kanpu, Akita prefecture, Japan.

JA-1a is andesite in Mt. Hakone, Kanagawa prefecture, Japan.

JA-2 is andesite in Sakaide, Kagawa prefecture, Japan.

97072402 is andesite in Mt. Tateshina, Nagano prefecture, Japan.

97072403 is andesite in Yatsugatake, Nagano prefecture, Japan.

T95071101 is andesite in Mt. Ontake, Nagano prefecture, Japan.

JG-2 is granite in Naegi, Gifu prefecture, Japan.

Bu94052601B, Bu94052603, Bu94052605 and Bu94052601A is granite in Okazaki, Aichi prefecture, Japan.

MA8032514, MA88032503, MA88032509 and MA88032512 is granite in southeast Australia.

Kurihashi is granite in Kamaishi, Iwate prefecture, Japan.

Table 8 Concentration of SiO2, MgO, Fe, Ni and Cr for JG-1a, JG-2, JG-3 and Busetsu granite

	JG-1a ³⁾	JG-23)	JG-33)	Bu94053601B	Bu94052603	Bu94052605	Bu94052601A
SiO ₂ (%)	72.30	76.83	67.29	72.2 ¹⁾	71.0 ¹⁾	74.4 ¹⁾	73.2 ¹⁾
MgO(%)	0.69	0.037	1.79	0.6 ¹⁾	0.7 ¹⁾	0.31)	0.41)
FeO(%)	1.4	0.68	2.58	1.76 ²⁾	1.99 ²⁾	0.9 ²⁾	1.372)
Ni(ppm)	6.91	4.35	14.3	14.2 ¹⁾	16.9 ¹⁾	19.8 ¹⁾	18.1 ¹⁾
Cr(ppm)	17.6	6.37	22.4	8.7 ²⁾	7.0 ²⁾	7.0 ²⁾	11.5 ²⁾

Note : 1)XRF data was refered [23]

2)INAA data was refered [23]

3)data from GSJ reference rock data base

3-4-3 0sの測定結果

0s についてはいくつかの岩石試料について 0s 濃度の測定ができた。Ir のように、岩石 間での 0s 濃度の顕著な相違は見られなかっ た (0s:14.5 to 84.5ppt)。しかし、測定に おける不確かさが、Ir に比べて遥かに大き い。これは、¹⁹¹0s から放出される γ線エネ ルギーのピークが非常に小さかったためで ある。今回の 0s の測定に関しては中性子照 射から 3 週間後に γ線測定を行ったのだが、 1 週間後、もしくは 2 週間後程度で γ線を測 定することができれば、¹⁹¹0s の半減期が 14.6 日であることから、今回よりも高感度 に測定することができるのではと考えられ る。

4 結論

同位体希釈中性子放射化分析法のスキーム を開発し岩石標準試料や未知試料を分析し た。Irのtotal procedure blankは0.0150 ±0.0005(ng)であり、これは本研究におけ る地殻物質中の Ir の定量値の 1/10 以下で あることから本研究の定量に関して差し支 えない。岩石標準試料 JP-1 と濃縮同位体の 量比を変化させて分析を行っても、その結 果が refernce の値とよく一致したことから、 NiS-fire assay 時に natural の Ir と spike の Ir は同位体平衡を経験していることが示 せた。本研究で開発された同位体希釈中性 子放射化分析法によって Ir の定量が可能で あることがわかった。玄武岩において、白 金族元素の不均質度はさまざまであること が考えられ、特に JB-1b においてはかなり の不均質性をもつ可能性があることが分か った。また武節花崗岩の Ir 含有量は他の花 崗岩と比べても特異であり、非常に高濃集 していることがわかった。この結果は武節 花崗岩が一般的な花崗岩の成因とは異なる 成因で生じた可能性を示唆する。また武節

花崗岩中の Ir が鉱物として存在するのでは なく、白金族元素の合金として存在してい るのではないかという可能性も同時に示唆 するものである。

0sに関しては¹⁹¹0sのような低エネルギー側 のγ線のピークを検出できたことから、今 後冷却時間の取り方によって十分に0s濃度 の定量が可能であることが言える。また 0s に限らず、他の白金族元素についても各白 金族元素の濃縮同位体同時に添加すること によって、濃度の定量が十分可能であると 考えられる。

5. 参考文献

- M. Takeda, H. Minowa and M. Ebihara, J. Radioanal. Nucl. Chem., 272 (2007) 363
- H. Minowa, M. Takeda and M. Ebihara, J. Radioanal. Nucl. Chem., 272 (2007) 321
- K. Shinotsuka, K. Suzuki and Y. Tatsumi, IFREE Report, 1 (2003) 373
- 4. N. Shirai, T. Nishino, X. Li, H. Amakawa and M. Ebihara, Geochem. J., 37 (2003) 531
- 5. T. Meisei and J. Moser, Chem. Geol., 208 (2004) 319
- K. Masumoto and M. Yagi, J. Radioanal. Nucl. Chem., 79 (1983) 57
- 7. T. Tanaka, R. Senda, S. Shibata, M. Minami and M. Tanimizu, abstract, Goldshmidt
- R. V. D., Robert, E. van Wyk and R. Palmer, Johannesburg, National Institute for Metallurgy, Report, 1371 (1971)
- 9. I. McDonald, R. J. Hart and M. Tredoux, Anal. Chim. Acta, 289 (1994) 237
- E. L. Hoffman, A. J. Naldrett and J. C. Vanloon, Anal. Chim. Acta, 102 (1978) 157
- T. Paukert and I. Ruveska, Anal. Chim. Acta, 278 (1993) 125
- 12. X. L. Li and M. Ebihara, J. Radioanal. Nucl. Chem., 255 (2002) 131

- K. Arai, Y. Saito and K. Kimura, abstract, 32nd Symp. Radiochem., (1988) 174
- K. Kimura and K. Arai, Personal communication, Aoyama Gakuin University, Japan (1989)
- 15. M. Ayabe, Y. Hirao and K. Kimura, Radioisotopes, 29 (1980) 8
- G. Agiorgitis, TMPM, Tschrmaks Min. Petr. Mitt., 25 (1978) 89
- M. Oddone, N. Genova and S. Meloni, J. Radioanal. Nucl. Chem., 99 (1986) 325
- C. F. Chai, S. L. Ma, X. Y. Mao, K. N. Liao and W. C. Liu, J. Radioanal. Nucl. Chem., 114 (1987) 281
- M. Oddone, S. Meloni and R. Vannucci, J. Radioanal. Nucl. Chem., 142 (1990) 489
- H. G. Plessen and J. Erzinger, Geostandards Newsl., 22 (1999) 187
- F. J. Flanakan, U. S. Geological Survey Professional Paper, Washington USA, (1976) 840
- 22. P. A. Baedeker, R. Schaudy, J. L. Elzie, J. Kimberlain and J. T. Wasson, Prec. 2nd Lunar Science Conf., 2 (1971) 1037
- Y. Matsumura, M. Sc. Dissertation, Nagoya Univ., Japan, (1995)
- 24. S. Ishihara, Mining. Geol., 27 (1977)

<成果の公表>

- Hoshino, M., Tanaka, T., Nakamura, T., Yoshida, H., Saito, T., Tsukada, K., Katsurada, Y., Aoki, Y. and Oho, S. (2010) Geological and Chronological Study in the Bishri Region. AL-RAFIDAN Special Issue 「Formation of Tribal Communities: Integrated Research in the Middle Euphrates, Syria」 9-19.
- 2. 鈴木和博・山北 聡・丹羽耕輔・東田和弘・
 田中 剛 (2009) 豊橋市の秩父帯石巻山石灰

岩から産した後期三畳紀コノドント。名古屋 大学博物館報告 21 号, 1-7.

- 3. 鈴木和博・東田和弘・田中剛(2009) 愛知県田原市の秩父帯蔵王山石灰岩から産出 した後期三畳紀コノドント。名古屋大学博物館報 告 21 号, 9-14.
- 4. 片岡良輔、沼田直樹、白川知恵、神田ゆか、 小沢 萌、中村明博、小畑怜子、三浦 悟、 竹内 誠、南 雅代、柴田理尋、田中 剛
 (2009) 放射線を指標とする環境評価教育の 開拓.名古屋大学博物館報告21号, 15-24.
- 5.田中 剛(2009) テル・ガーネムアリの土は ビシュリ台地から運ばれた? -天然放射線 を用いた土壌対比の試み- 文部科学省科学 研究費補助金 特定領域研究「セム系部族社会 の形成」ニュースレター No.15, 7-9.
- 6. Hoshino, M., Tanaka, T., Nakamura, T., Katsurada, Y., Aoki, Y. and Oho, S. (2009) Archaeological research in the Bishri Region. - Report of the Sixth working season
 - 1. Geological and geographical field survey in the Sixth working season. AL-RAFIDAN XXX, 167-172.
- 7. 田中 剛 (2009) さわって心地よい岩石。 地質ニュース 656 号, 49-52。
- 离 雅代・池田晃子・吉田英一・田中 剛 (2009) 石灰質砂岩の炭素14を指標とする風 化評価。名古屋大学加速器質量分析計業績報 告書(XX)71-80.
- 9. 中村俊夫・星野光雄・田中 剛・木内智康・ 太田友子(2009) シリア Tell Hammadin 遺跡 から採取した木炭の¹⁴C 年代測定.名古屋大学 加速器質量分析計業績報告書(XX) 139-144.
- 10. Hoshino, M., Tanaka, T., Nakamura, T., Yoshida, H., Saito, T., Tsukada, K. and Katsurada, Y. (2008) Archaeological research in the Bishri Region. - Report of the Fourth working season - 1. Geological and geographical field survey. AL-RAFIDAN XXIX, 171-176.
- 田中 剛(2008)地球化学図と中性子放射 化分析による多試料・多元素分析。TRACER(名 古屋大学アイソトープ総合センター広報誌) vol. 44, 3-8。
- 12. Kim, K.H., Nagao, K., Sumino, H., <u>Tanaka,</u> <u>T.</u>, Hayashi, T., Nakamura, T. and Lee, J. I. (2008) He-Ar and Nd-Sr isotopic compositions of late Pleistocene felsic plutonic back arc basin rocks from Ulleungdo volcanic island, South Korea: implications for the genesis of young plutonic rocks in a back arc basin. Chem. Geol. vol. 253, 180-195.
- Ahmad, T., <u>Tanaka, T.,</u> Sachan, H. K., Asahara, Y., Islam, R. and Khanna, P. P. (2008) Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: Implications for the Neo-Tethyan Subduction along the Indus Suture Zone. Tectonophys. vol. 451, 206-224.
- 14. <u>田中</u> 剛・南 雅代・吉田英一・吉田鎮男 (2008) コンクリート風化の超長時間評価指 標としての石灰質砂岩の¹⁴C存在度変化。名古 屋大学加速器質量分析計業績報告書(XIX) 66-72.
- 15. Ahmad, T., Dragusanu, C. and <u>Tanaka, T.</u> (2008) Provenance of Proterozoic Basal Aravalli mafic volcanic rocks from Rajasthan, Northwestern India: Nd isotopes evidence for enriched mantle reservoirs. Precambrian Res. vol. 162, 150-159.
- 16. 伊藤知子・<u>田中 剛</u>・南 雅代・山本鋼志・ 浅原良浩・三村耕一・竹内 誠・柴田信之介・ 小島 久(2007)地圏環境における元素分布・ 循環の研究 -ヒ素とクロム-。平成18年度原 研施設利用共同研究成果報告書 no.46、(印刷 中)。東京大学原子力研究総合センター。
- Wakaki, S., Shibata, S. and <u>Tanaka, T.</u>
 (2007) Isotope ratio measurements of trace

Nd by the totalevaporation normalization (TEN) method in thermal ionization mass spectrometry. International Jour. Mass Spectrometry. vol. 264, 157-163.

- 18. Takagi, M. and <u>Tanaka, T.</u> (2007) An attempt to determine the age of geological fractures by applying Rb-Sr mineral isochron dating to fracture-filling minerals. Geochem. Jour. vol. 41, 165-172.
- Yamamoto, K., <u>Tanaka, T.,</u> Minami, M., Mimura, K., Asahara, Y., Yoshida, H., Yogo, S., Takeuchi, M. and Inayoshi, M. (2007) Geochemical mapping in Aichi Prefecture, Japan: Its significance as a useful dataset for geological mapping. Applied Geochemistry. vol. 22, 306-319.
- Senda, R., <u>Tanaka, T.</u> and Suzuki, K. (2007) Os, Nd and Sr isotopic and chemical compositions of ultramafic xenoliths from Kurose, SW Japan: Implications for contribution of slab-derived material to wedge mantle. Lithos vol. 95, 229-242.

4-4

「海洋バクテリア中の微量金属元素の定量」

Quantitative analysis of trace metals in marine bacteria

東京慈恵会医科大学 アイソトープ実験研究施設 箕輪はるか

A. 研究の目的と意義 スキン採水器により深度別に採水し、海底泥試料 地球の物質循環において海洋の果たす役割は は、マルチプルコアラーを用いて採泥した。以下 大きい。海水中の微量元素の挙動を調べる際には、 に航海番号、測点(緯度・経度・深度)、採取年 元素が海水に溶存する場合と、非生物粒子に付着 月日、採水・採泥深度を示す。 する場合、バクテリア等の生物中に存在する場合 B-1-1. 海水試料 とでは、それぞれ挙動が異なることが予想される。 Cruise No.KT-06-31, S1 (黒潮外側 33°06'N, 海洋における元素の分布に関しての研究は多い 138°05'E, 4060m), 2006.12.7, Depth: 300, 1000, が、バクテリアの影響はあまり重視されていない。 3000m 熱水鉱床等における研究によれば、金属元素を取 S2 (黒潮内側 33°51′N, 138°17′E, 3780m), り込むバクテリアは数多く存在する。しかし、こ 2006.12.8, Depth: 300, 1000, 3000m れらのバクテリアが熱水湧水以外の外洋領域に Cruise No.KT-07-16, S0 (黒潮外側 30°00'N, 存在するのか否か、微量元素の循環にバクテリア 138°00'E, 4000m), 2007.7.13, Depth: 200, 1000, がどのような役割を果たしているのかなどにつ 3000m いては、バクテリア中の微量元素を分析すること Cruise No.KT-09-11, S1 (黒潮外側 30°40′N, が困難であるためほとんど研究されていない。本 138°00'E, 3750m), 2009.7.3, Depth: 200, 1000, 研究では、沿岸の影響の少ない外洋域で採取した 3000m 海水を用いてバクテリアを培養し取り込まれる S2 (黒潮内側 33°56′N, 138°09′E, 3300m), 元素を測定することにより、微量元素の海洋循環 2009.7.4, Depth: 200, 1000, 3000m におけるバクテリアの役割を解明することを目 P (相模湾 35°00′N, 139°22′E, 1400m), 2009.7.5, 的とした。 Depth: 200, 1000, 1386m 研究の具体的な目的は以下のとおりである。 B-1-2. 海底泥試料 1. 海水中のバクテリアに濃集される重金属元素 Cruise No.KT-07-16, T5 (東京湾 35°02′N, を測定する。1-a海水からバクテリアを回収し 139°50'E, 76m), 2007.7.10 海底 76m コア表層 て測定し、重金属元素の定量が可能か調べる。1 T6 (東京湾 34°35′N, 140°00′E, 800m), 2007.7.10, -b 海水に重金属元素を添加して培養し、バクテ 海底 800m コア表層 リアへの吸着率を調べる。2. 重金属元素を添加 P1 (相模湾 35°00′N, 139°20′E, 1500m), した培地を用いて海底泥からバクテリアを採取 2007.7.11, 海底 1500m コア表層 し、重金属元素を特異的に濃集する海洋バクテリ S0 (黒潮外側 30°00′N, 138°00′E, 4000m), アを探索し、その生態を調査する。 2007.7.13, 海底 4000m コア表層 B. 研究の方法 B-2. バクテリアの培養 B-1. 試料 B-2-1. 海水培養実験 海水試料約 1L をメンブレンフィルタ (0.2 µ 試料は、海洋研究開発機構(JAMSTEC)の学 術研究船「淡青丸」による研究航海において採取 m, Isopore, Millipore) を用いて吸引濾過し、こ した海水および海底泥を用いた。海水試料は、ニ のメンブレンフィルタを蓋つきの容器に入れ、培

JRR-3、PN-1, PN-3、放射化分析(環境・生物試料)

養液を入れて培養した。

培養液組成:滅菌海水 100ml、0.02%グルコース、 ミネラル (Fe, Mn, Co, Cu, Cr); 培養条件: 冷暗 所、約3カ月

B-2-2. 海底泥からの培養

海底泥試料約 0.5g をクロムアズール平板培地 に接種した。この培地は、鉄の錯イオンを含み青 色を呈し、バクテリアによって鉄が消費されると 青色が脱色されてオレンジ色を呈する。発生した コロニーのうち、培地が脱色されたコロニーおよ び着色したコロニーを選び、分析試料とした。 培地組成:3%アガロース、6%NaCl、0.1%グルコ ース、0.02M-HEPES、リン酸緩衝液、クロムア ズール S、HDTMA、ミネラル (Fe, Mn, Co, Cu, Cr, Mg, Ni, K, Ca);培養条件:18℃、約1カ月

B-3. 元素の定量

B-3-1. 中性子照射試料の作成

a. 海水試料

海水試料に、25%アンモニア水 5 ml を加えて 沈殿を生成し一晩静置した。上澄みを捨て、沈殿 を赤外線ランプ下で乾固した。 乾固した沈澱粉 末を重量測定し、粉末試料をポリエチレン袋に入 れて秤量し、照射用試料とした。

b. 培養液バクテリア分画

海水培養液をメンブレンフィルタ(0.2 µ m, Isopore, Millipore)を用いて吸引濾過し、メンブ レンフィルタを室温で乾燥させて秤量したのち、 照射用試料とした。

c. 培養液濾液

培養液を濾過した濾液に、25%アンモニア水 5 mlを加えて沈殿を生成し2~3日静置した。上澄 みを捨て、沈殿を赤外線ランプ下で乾固した。乾 固した沈澱粉末を重量測定し、粉末試料をポリエ チレン袋に入れて秤量し、照射用試料とした。

d. 培養コロニー

アガロース平板培地上のコロニーをミクロス パーテルで切り取り、濾紙の上で乾燥させ、濾紙 ごと照射用試料とした。 B-3-2. 中性子照射条件およびガンマ線測定条件 a. 短時間照射

定量目的元素: Mg, V, Cu, Mn; 原子炉: JRR-3, PN-3; 照射時間: 10秒; 冷却時間: 200秒、8000 秒; 測定時間: 100秒、300秒; 測定装置: 日本 原子力研究開発機構 JRR-3 炉室内放射化分析室 Ge 半導体検出器

b. 長時間照射

定量目的元素: Fe, As, Cd, Cr, Sc, Co; 原子炉: JRR-3, PN-1; 照射時間: 10分; 冷却時間: 8日、 40日; 測定時間: 12000秒、30000秒; 測定装置: 日本原子力研究開発機構 大学開放研実験室 Ge 半導体検出器 ASC-20 および ASC-40 B-3-3. 標準試料

目的の 10 元素(Fe, Mg, V, Cu, Mn, As, Cd, Cr, Sc, Co)の化学試薬溶液をろ紙上に滴下、乾固させた。
a. 短時間照射用標準試料(計算上 10 秒照射 100
秒後に 100cps となるよう調整した)
マグネシウム(1mgMg)、バナジウム(0.01mgV)、
銅(0.1mgCu)、マンガン(0.01mgMn)
b. 長時間照射用標準試料(計算上 10 分照射 7 日
後に 100cps となるよう調整した)
鉄 (0.1gFe)、砒素(0.01mgAs)、カドミウム
(0.1mgCd)、クロム(0.1mgCr)、スカンジウム
(0.01mgSc)、コバルト(0.01mgCo)

B-4. 菌種の同定

培養液中のバクテリアを含む沈殿物あるいは 平板培地上のコロニーから、エタノール沈殿法あ るいは ISOIL for Beads Beading(ニッポンジー ン)を用いて DNA の抽出を行った。16S-rDNA ユニバーサルプライマー、BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) を用いた PCR 反応を行ない 16S-rDNAを増幅し、ABI PRISM DNA シークエ ンサー (Applied Biosystems) により DNA 配列 解析を行った。BLAST を用いた相同性検索によ り種を同定した。

16S·rDNA ユニバーサルプライマーはデータ ベースから配列を決定し作成した。塩基配列は以

JRR-3、PN-1, PN-3、放射化分析(環境・生物試料)

下のとおりである。Primer F (forward): AGA GTT TGA TCA TGG CTC AG; Primer R (reverse): ACG GTT ACC TTG TTA CGA CTT

C. 結果・成果

C-1. 海水中の元素組成

海水試料から全試料で定量できた元素は Mg で、 海水1L中に含まれる Mg は 0.2~0.4g であった。 Mg 含有量は、同一測点において浅い領域(200 あるいは 300m)の試料の方が深い領域(3000m) の試料よりも大きい値となる傾向があった。Fe, Co, Mn, Cr, Sc, V はいくつかの試料で定量でき、 Cu, As, Cd は全試料で検出限界以下であった。

C-2. 海水培養実験

C-2-1. 元素定量結果

海水、培養液(濾液)および培養したバクテリ ア中の Mg, Fe, Co, Cr, Mn を定量した。バクテリ ア分画中の鉄およびクロム量の一部を表1. に示 す。バクテリアにより捕集された元素は Fe であ った。バクテリアによって捕集されにくかった元 素は Mg, Co, Mn であった。Cr は、No. KT-06-31. S1 (黒潮外側) 試料ではバクテリア分画に濃集し ていたが No. KT-06-31. S2 (黒潮内側) 試料では 濾液中含有量がバクテリア分画中含有量より大 きいなど、試料によって違いがあった。

C-2-2. 菌種同定結果

海水培養実験で培養された最も優勢な種は、 16S-rDNA シークエンス解析により *Bacillus Subtilis*(枯草菌)であると同定した。

C-3 海底泥からの培養

C-3-1. 培養結果

クロムアズール培地により培養した結果、 Cruise No.KT-07-16, SO 海底泥コア表層試料を 用いて培養した培地に赤色を呈するコロニーの 発生が認められた。

C-3-2. 元素定量結果

赤色を呈したコロニーに、培地の 20 倍の Cr の 濃集がみられた。 C-3-3. 菌種同定結果

クロムアズール培地により培養され赤色を呈 したコロニーのバクテリアは、16S-rDNA シーク エンス解析により *Roseobacter*(ロゼオバクター) であると同定した。

表1.海水培養実験におけるバクテリア分画中の 鉄およびクロム量

航海番号	測点	採水 深度	鉄添 加量	鉄	クロム
		m	μ g	$\mu \ \mathbf{g}$	μ g
		200	50	25 ± 3	n.d.
KT-09-11	S1	1000	50	26±3	n.d.
		3000	50	23±2	0.21 ± 0.03
		200	50	24±2	0.12 ± 0.03
KT-09-11	S2	1000	50	25 ± 2	n.d.
		3000	50	14±1	n.d.
		200	250	108±4	0.22 ± 0.03
KT-09-11	S1	1000	250	11 7 ±4	0.24 ± 0.03
		3000	250	135±4	0.28 ± 0.03
		200	250	135±4	0.27 ± 0.04
KT-09-11	S2	1000	250	96 ± 5	0.24 ± 0.03
		3000	250	113±4	n.d.

クロム添加量 0.3μg、n.d.:検出限界以下

D. 考察·評価

D-1. 分析手法の確立

中性子放射化分析法を海水試料に適用し、元素 の定量を行なった。全試料で定量できたマグネシ ウムは海水の主成分である塩分量を反映してい るものと思われる。コバルトは、ほとんどの試料 でバクテリア分画中には検出されず、濾液中に存 在していた。したがってこの培養条件でコバルト はバクテリアに吸着・捕集されることはなかった と考えられる。培養実験の際のコバルト添加量お よび分析した濾液中の定量値から、濾液の元素回 収率は75~90%と見積もった。海水中の元素濃度 を中性子放射化分析法により定量するための前 処理方法を確立することができた。

JRR-3、PN-1, PN-3、放射化分析(環境・生物試料)

D-2. バクテリアによる元素の吸収

鉄の定量値は、浅い領域(200m または 300m) からの試料の方が深い領域(3000m)の試料より も値が高くなる傾向を示した。このことは、浅い 領域にいるバクテリア群の方が生産性が高い傾 向にあることを示す。バクテリア種の同定結果は 浅い領域の海水も深い領域の海水も同じ種が優 勢となっていた。本研究における分析法では最も 優勢な種のみしか同定できないため、深度による 鉄吸収能の違いがその海水に存在していたバク テリア種の違いによるものか、別の要因によるも のかは不明である。

クロムは、バクテリア分画に濃集した場合と濾 液中により多く存在した場合とがあった。後述す るように海水中にはクロムを濃集することので きるバクテリアが存在する。クロム濃集の違いは 採水時に海水中にそのようなバクテリア種が存 在したかどうかに依存しているとすると、鉄およ びクロム吸収能の違いは、バクテリア種の違いを 反映していると考えられる。

一方、深度により鉄吸収能が異なる別の要因と して、採集時のバクテリア存在量の違いや状態の 違いにより、同じ種であっても鉄の取り込み量が 異なったことも考えられる。高圧、低温、飢餓状 態などにさらされたバクテリアは増殖時とは異 なるいわゆる休眠状態を取る場合があることが 知られており、もしそのような要因によるもので あれば、本研究の結果は海洋中でのバクテリアの 状態を推測する手掛かりになると期待される。

D-3. クロム濃集バクテリア

海底泥からの培養によりクロムを特異的に濃 集するバクテリアを発見し、*Roseobacter*(ロゼ オバクター)と同定した。ロゼオバクターは、海 底あるいは海水中に浮遊して生息するバクテリ アで、バクテリオクロロフィルを用いて光合成を 行う紅色細菌の一種である。光合成において酸素 を発生せず、カロテノイドの蓄積により赤色ある いは褐色を呈する。この種のバクテリアがクロム を濃集するという事実は、2006 年に初めて報告 された(J. Gao et al., 2006)。しかしクロムがど のように用いられているのか詳細はまだわかっ ていない。酸素非発生型の光合成を行うこのバク テリアの特異的な性質から、エネルギー獲得機構 の過程において何らかの形でクロムを用いてい る可能性が考えられる。

E. まとめと今後の方針

中性子放射化分析法を適用し、海水およびバク テリア試料から微量元素を定量する方法を確立 した。海水培養実験により鉄およびクロムのバク テリアへの吸着率を測定した。海底泥からの培養 コロニーを中性子放射化分析法で分析し、クロム を特異的に濃集するバクテリアを発見した。この バクテリアに 16S-rDNA によるシークエンス解 析を行ない *Roseobacter* (ロゼオバクター) と同 定した。

海洋での元素循環におけるバクテリアの影響 を調べるためには、バクテリア群集全体の包括的 な分析が不可欠である。特にバクテリアが海洋環 境中に実際に存在している時の状態を知るため には培養による選別を経ずに分析する方法が必 要になる。そのため現在 TGGE (温度勾配ゲル電 気泳動法)を用いたゲノムプロフィリング法を開 発中である。これにより海洋に存在する複数のバ クテリア種の分布を調べることができる。本研究 による培養実験の結果に加えて、バクテリア種に 関する情報が得られれば、海洋において鉄および クロムの循環を担うバクテリアについての詳し い知見が得られるであろう。また、今回クロムを 濃集することが確認されたロゼオバクターにつ いては、クロムをどのように利用しているか解明 するために、安定して培養できる条件を探し培地 にクロムや他の重金属を添加してその取り込み について調べる予定である。

F. 成果の公表

東京慈恵会医科大学 教育・研究年報 第 28 号 (2008 年版)「アイソトープ実験研究施設」 p.274-5、東京慈恵会医科大学、2010.

JRR-3、PN-1, PN-3、放射化分析(環境・生物試料)

4-5

「農産物および土壌試料の元素分析」

Determination of elements of agricultural crop and soil 東京大学大学院農学生命科学研究科応用生命化学専攻 中西友子

・研究の目的と意義

<概要>

植物および土壌試料中の元素濃度を非破壊状態で 定量する方法として、放射化分析は多元素同時分析 できる利点がある。本研究では、元素による農産物 の産地判別技術に放射化分析を用いた。

近年、複数の元素濃度パターンや同位体比などを 駆使し、統計処理をすることにより産地を特定する 技術開発が試みられ、一部の農産物については判別 が可能になってきている。この元素パターンによる 判別システムでは、通常 ICP-AES もしくは ICP-MS が利用されるが、対象とする元素の範囲を拡大でき れば、産地特定の精度の向上が期待できる。そこで、 本研究では、次の利点を持つ放射化分析法を導入し た;1) ICP-MS 等の前処理である溶液化が必要ないこ とから、極微量元素の混入が最小限に抑えられる。 2) 高感度に定量できる元素が多くある。3) 多元素同 時分析を行うことができる。これらの利点を最大限 活かし、サンプル中の元素検出を試み、そのデータ から産地特定法の開発を試みた。

・その研究をどのように行ったか

産地判別の対称として、牛肉とサトイモについて 実施した。

<牛肉>

産地が明確なサンプルは、消費技術センターより 入手した。また、一部の試料は小売店より入手した。 ミキサーで均一化した後、フリーズドライしたサン プルを放射化分析に供した。

<サトイモ>

産地が明確であるサトイモは、主に農林水産消費 安全技術センターが収集したものの分譲を受けた。 輸入の大半は中国産であることから、海外産として は中国産を用いた。サトイモは、洗浄し皮をむいた 可食部をホモジェナイズし、フリーズドライで脱水 し、粉末化した。

<放射化分析>

牛肉はペースト状のサンプルを、サトイモは粉末 約0.35gを錠剤成型機で錠剤化した後、高純度ポリ エチレン袋で二重に封入し、高純度ポリエチレンの キャプセルに封入した。試料の照射は、(独)日本原 子力研究開発機構・東海研究開発センター・原子力 科学研究所内研究炉、JRR3 で行った。牛肉について は短半減期核種のみを、サトイモについては短半減 期と長半減期核種を測定した。短半減期核種につい ては、30秒間中性子を照射後、2分間冷却時間をお いた後、ゲルマニウムカウンターで2分間放射化し たサンプルからのガンマー線を測定した。長半減期 核種については、20分間中性子を照射後、約1週間 冷却期間をおいた後、ゲルマニウムカウンターで 3,600 秒ガンマー線を測定し、さらに照射後2週間 以上の冷却期間をおいた後、同じくゲルマニウムカ ウンターで 30,000 秒ガンマー線を測定した。得られ たガンマー線スペクトルから、各核種に該当するガ ンマー線エネルギーのピーク面積を算出し、半減期 補正を行った。同様にして測定した認証標準物質の データおよび測定値を比較することにより、サトイ モ中元素濃度を測定した。

<イオンクロマトグラフィ>

サトイモについては、さらに多くの無機元素を測 定するために、イオンクロマトグラフィを実施した。 粉末サンプル50mgを1mlの0.1%tween20水溶液で熱 湯抽出を行った。遠心およびフィルターを通して得 られた上清をイオンクロマトグラフィで測定した。

・どのような成果を得たか<牛肉>

JRR3、中性子利用元素分析、ライフサイエンスへの応用

分析したサンプルは、オーストラリア産(ホルス タイン)、アメリカ産牛肉、国産ホルスタインおよび 黒毛和牛の4種類であった。また、部位については 4つの部位が混在していた。Table1 に収集サンプル を示した。

Table 1

サンプル No.	産地 (品種)	部位
A1	Australia	round
A2		round
A3		sirloin
A4		round
A5		chuck
A6		chuck
U1	United States	chuck
U2	of America	chuck
U3		chuck
U4		chuck
U5		chuck
H1	Japanese	sirloin
H2	Holstein	sirloin
H3		chuck
H4		fillet
H5		round
J1	Japanese	round
J2	Black Cattle	round
J3		unknown
J4		unknown
J5		chuck
J6		chuck
J7		sirloin
J8		sirloin

B, sirloin C, fillet D, round

短期放射化分析の結果、Table 2に示すような複数 の元素濃度を得ることができた。

Table 2 放射化分析により定量した元素濃度一覧

		INAA			
153Sm, ppm	⁸⁰ Br, ppm	²⁷ Mg, ppm	²⁴ Na, ppm	42K, ppm	38Cl, ppm
0.019 ± 0.0008	2.33 ± 0.10	0.12 ± 0.008	0.31 ± 0.007	1.19 ± 0.04	0.26 ± 0.012
0.013 ± 0.0005	0.97 ± 0.18	0.14 ± 0.004	0.17 ± 0.003	1.32 ± 0.04	0.17 ± 0.004
0.013 ± 0.0005	1.14 ± 0.12	0.10 ± 0.005	0.17 ± 0.002	0.99 ± 0.04	0.18 ± 0.006
0.012 ± 0.0007	1.11 ± 0.08	0.12 ± 0.008	0.17 ± 0.001	1.12 ± 0.03	0.17 ± 0.005
0.013 ± 0.0007	0.66 ± 0.01	0.08 ± 0.006	0.18 ± 0.005	0.81 ± 0.07	0.19 ± 0.003
0.011 ± 0.0006	0.38 ± 0.27	0.08 ± 0.010	0.14 ± 0.001	0.80 ± 0.03	0.15 ± 0.006
0.016 ± 0.0010	0.31 ± 0.07	0.09 ± 0.005	0.22 ± 0.002	1.15 ± 0.06	0.23 ± 0.004
0.016 ± 0.0013	0.72 ± 0.09	0.10 ± 0.004	0.22 ± 0.009	1.11 ± 0.02	0.25 ± 0.005
0.017 ± 0.0001	0.72 ± 0.04	0.10 ± 0.015	0.24 ± 0.003	1.04 ± 0.05	0.25 ± 0.002
0.013 ± 0.0013	0.66 ± 0.09	0.09 ± 0.004	0.19 ± 0.003	1.08 ± 0.05	0.20 ± 0.008
0.017 ± 0.0009	0.63 ± 0.08	0.13 ± 0.008	0.23 ± 0.002	1.41 ± 0.03	0.24 ± 0.005
0.009 ± 0.0007	0.65 ± 0.13	0.07 ± 0.005	0.11 ± 0.002	0.63 ± 0.03	0.13 ± 0.007
0.012 ± 0.0003	1.07 ± 0.05	0.09 ± 0.004	0.17 ± 0.009	0.87 ± 0.07	0.17 ± 0.003
0.010 ± 0.0009	0.96 ± 0.06	0.05 ± 0.006	0.13 ± 0.002	0.71 ± 0.04	0.16 ± 0.001
0.013 ± 0.0002	0.94 ± 0.07	0.13 ± 0.013	0.19 ± 0.002	1.36 ± 0.06	0.19 ± 0.005
0.012 ± 0.0004	2.09 ± 0.07	0.12 ± 0.005	0.18 ± 0.001	1.27 ± 0.08	0.16 ± 0.003
0.011 ± 0.0013	1.42 ± 0.09	0.07 ± 0.003	0.18 ± 0.001	0.60 ± 0.03	0.17 ± 0.003
0.009 ± 0.0003	0.75 ± 0.07	0.06 ± 0.009	0.13 ± 0.004	0.62 ± 0.03	0.13 ± 0.007
0.006 ± 0.0006	0.25 (single data)	0.03 ± 0.003	0.08 ± 0.003	0.31 ± 0.04	0.09 ± 0.003
0.006 ± 0.0005	0.33 ± 0.03	0.04 ± 0.005	0.07 ± 0.004	0.33 ± 0.04	0.08 ± 0.002
0.009 ± 0.0007	1.02 ± 0.14	0.05 ± 0.009	0.12 ± 0.003	0.60 ± 0.02	0.13 ± 0.002
0.004 ± 0.0003	0.57 ± 0.04	0.03 ± 0.005	0.06 ± 0.003	0.32 ± 0.03	0.07 ± 0.001
0.005 ± 0.0006	0.39 ± 0.05	0.03 ± 0.0003	0.06 ± 0.006	0.31 ± 0.05	0.07 ± 0.005
0.008 ± 0.0002	1.05 ± 0.08	0.05 ± 0.003	0.10 ± 0.003	0.42 ± 0.01	0.12 ± 0.009

放射化分析法により定量できた元素について、主 成分分析 (Principal component analysis: PCA) を 行った。その結果をFig.1に表した。

Figure 1 牛肉サンプル中元素濃度による産地の主 成分解析。▲オーストラリア産 (ホルスタイン)、★ アメリカ産、■国産(ホルスタイン)、●国産黒毛。 Modeling power は、このモデリングへの寄与度を示 す。

主成分解析 (PCA)の結果、国産黒毛とアメリカ産 は明確に分かれたが、国産ホルスタインおよびオー ストラリア産ホルスタインは分かれなかった。また、 Modeling PowerのSmとBrが特に大きいことから、 このモデリングへの寄与は Sm、Br が大きく、産地判

JRR3、中性子利用元素分析、ライフサイエンスへの応用

別に有用な元素であることが示唆された。この PCA 解析では肉の部位に関わらず全てのサンプルを対象 とし、産地別でモデリングを行ったが、次に、部位 別に PCA 解析を行った。その結果を Fig. 2 に示す。

Figure 2 牛肉サンプル中元素濃度による部位別の
主成分解析。▲round、★chuck、■sirloin、○fillet、
●不明

Fig.2に示されるように、どの部位に関しても分離しなかったため、今回得られた元素濃度では、部位の判別は困難であった。

今回の手法では、国産黒毛とアメリカ産の判別が できる可能性が示唆された。さらに、用いる肉の部 位は特に考慮しなくても、産地の判別に影響しない ことも示された。

<サトイモ>

放射化分析により、短半減期核種:A1, Mg, Ca, C1, Mn、 長半減期核種:K, Na, Br, Co, Cr, Cs, Zn, Fe, Rb, Sc が測 定できた。国産および外国産の平均濃度について t 検定を行ったところ、有意水準 5%の元素は Br, Sc, Zn で、1%の元素は Ca, Mg, Na, Co, Cr であった。そのうち、 度数分布を検討して有効であると予想できた元素は、 Co および Cr であった(Fig. 3)。これらの元素量は 極めて微量であったが、放射化分析では定量するこ とができた。

ー方、イオンクロマトグラフィで測定できたイオ ンは、Cl⁻, NO₃⁻, SO₄²⁻, H₂PO₄⁻, malate, oxalate であった。 有機酸もピークを確認できたので、定量をした。平 均値のt検定の結果、5%: Oxalate、1%: H₂PO₄⁻であ った。度数分布を調べたところ、H₂PO₄⁻が有効である と考えられた。

Figure 4 イオンクロマトグラフィ法で定量した $H_2PO_4^-$ の濃度別度数分布

有効であると予想された変数として、Co、Cr およ びH₂PO₄⁻の濃度を選択し、単純プロットしたところ、 特に Co と H₂PO₄⁻で国産および海外産の分布が分かれ る傾向が見られた (Fig. 5)。さらにこれら3変数を 基に多変量解析を行ったところ、明確に産地が分か れた (Fig. 6)。試みとして、有意水準1%である Ca とMgの濃度データも採用して5変数による多変量解 析を実施したところ、グルーピングが拡散してしま う傾向が見られた (Fig. 7)。これらのことから、本 研究で得られた濃度データでは、Co、Cr および H₂PO₄⁻ を採用することが最もよいグルーピングを示すと考 えられた。よって、本研究により、判別に有用な成 分として、微量元素は Co と Cr が、水溶性イオンと しては H₂PO₄⁻を見いだすことができた。

JRR3、中性子利用元素分析、ライフサイエンスへの応用

Figure 5 Co、Cr、H₂PO₄の濃度によるブロット

Figure 6 Co、Cr、H₂PO₄-による PCA 解析

Figure 7 Co、Cr、H₂PO₄⁻、Ca、Mg による PCA 解析

・継続する場合は、今後の方針

サトイモについては、加工品の輸入も多いことか ら、加工品に関しても、元素分析による判別の可能 性があるかどうかについて、今後実験を実施したい と考えている。

JRR3、中性子利用元素分析、ライフサイエンスへの応用

・成果の公表

<学術論文>

Saito T., Tanoi K., Matsue H., Iikura H., Hamada Y., Seyama S., Masuda S., and Nakanishi T.M. 2008 年

"Application of prompt gamma-ray analysis and instrumental neutron activation analysis to identify the beef production distinct" Journal of Radioanalytical and Nuclear Chemistry, 278(2), 409-413

<学会発表>

Saito T., Tanoi K., Matsue H., Iikura H., Hamada Y., Seyama S., Masuda S., and Nakanishi T.M. 12th International Conference "Modern Trends in Activation Analysis" MTAA-12 2007 年 9 月 17 日—21 日

"Application of prompt gamma-ray analysis and instrumental neutron activation analysis to identify the beef's provenance"

4-6

毛髪試料の放射化分析 INAA analysis of hair samples

豊田和弘・川村英亮・Aster Rahayu(北海道大学・大学院環境科学院)

Kazuhiro Toyoda, Hideaki Kawamura, Aster Rahayu

(Graduate school of Environmental Science, Hokkaido Univ.)

1.研究目的と意義、いきさつ

平成19年度(初年度)施設利用申請時は、「毛 髪中のミネラル (金属元素) の濃度の変動により、 ガンの予兆検知、高血圧症、肝機能などの診断が 医学的根拠に基づいてできることが判明しつつ あり、毛髪中の微量元素が注目されている。毛髪 などの生体試料中の有害金属や有益なミネラル 成分の濃度分布について調べたい」と考え、「申 請者の所属する学院は環境問題を取り扱う研究 教育機関であり、大学院大学で学部がないので予 測できないが、このような生体内での有害重金属 の挙動に興味のある修士課程1年の院生が7月 に配属になった場合に備えてあらかじめ申請を した」わけだが、残念ながら、初年度には院生の 進学がなく、毛髪試料の定量について予備的な測 定を行なっただけであり、次年度の春には、院生 6名の学生実習として、自分の毛髪の微量元素測 定をおこなった。

ちなみに、本申請にたいする審査委員会からは、 「毛髪試料中の微量元素の放射化分析の研究はか なり昔に系統的に行なわれているので、今さら研 究するテーマではないのではないか」、というコ メントもあった。確かに,1980年代にすでに系統 的に放射化分析による日本人の毛髪中の多くの 微量元素の定量した研究が報告されている。昭和 51 (1976) 年に国際原子力機関 (IAEA) は、環境 汚染物質による人体の汚染を調べるため各国で の基準となる毛髪中の微量元素濃度を調査する 事を勧告した際に、京大原子炉実験所にて、日本 各地から集められた 342 検体の分析が行なわれて、 詳しく解析されている。また、有機水銀と毛髪の 関係についても詳しく報告されている。また、大 森左興子教授(大妻女子大)により毛髪の放射化 分析に関する研究結果や総論が「放射化分析」 No.8と11に報告されている。

そこでまだ測定がされたことがない試料を対象に選ぶべしということで、研究室に来たインドネシア人研究留学生の研究テーマを、インドネシ ア人の毛髪の放射化分析、と定めて、彼女に出身 地のスマトラ島やジャワ島の住人の毛髪試料を 北海道大学に送ってもらいうように手配をして、 環境との関連について調査する計画を立てた。

また、Takeuchi et al. (1982)のデータによれ ば、アンチモンの定量値に大きなバラツキがある ように記載されており、年齢や性別での毛髪中の アンチモン含有量についての考察もされていな い。アンチモンは周期表ではヒ素の真下に位置す る元素で、ヒ素と同様に人体に有害な元素であり、 人体 1kg あたりへの耐容一日摂取量はヒ素の3倍 の6µg/kg/day である。地殻内存在量はヒ素の5 分の1であるが、近年環境中への人為的な排出量 が急増しており、Takeuchi et al. (1982)での毛 髪試料中のアンチモン含有量の大きな変動は、環 境中からの被爆履歴の相違によるものではない かと作業仮説を想定して、人為的な排出物中のア ンチモン含有量に興味をもった。

アンチモンの工業的な用途としては各種プラ スチックやゴム繊維などの耐防火安全性強化の ための難燃助剤や、PET ボトル樹脂のポリエチレ ンテレフタレートの重合剤として使用されてい る。また、東京の大気中の粉塵にアンチモンが濃 縮しているのは、ブレーキ素材の硬度を高めるア ンチモン合金の微粒子の混入が主な原因という 研究(Furuta et al.,2005)もある。ということ で、3年目の申請書では、PET ボトル樹脂やその 焼却灰内のアンチモン含有量について分析する ように申請した。

研究炉の稼働が計画外停止の期間延長の積み 重ねにつき、3年目もインドネシア人の毛髪の放 射化分析はあきらめざるをえなかったが、日本と インドネシアで販売されているペットボトル、お よび札幌市白石清掃工場の2009年7月から2010 年2月までに焼却炉の濾過式集塵機に捕集された 飛灰試料は3年目の年度末に分析を行なえたの で、その分析値について報告する。また、飛灰試 料中のアンチモンのうちどれくらいの割合がリ サイクルされなかったペットボトルから生じた ものかを見積もる。このように、リサイクルや廃 棄物における微量元素の挙動を調べる事は環境 問題を考える上で、重要な事である。

JRR-3、HR 孔、JRR-4、T 孔、放射化分析(環境試料)

また、ペットボトル樹脂は薬品にたいして抵抗 性が強く、王水などの強酸で常圧下で煮ても、完 全に分解して溶液にならない。次に、飛灰試料に は消石灰が混入されているので、ICP 測定に供す るためには、試料を酸で溶かしても大量に希釈す る必要がある。また、活性炭や珪酸塩なども混じ っているために、完全に溶液化するのにはやや手 間もかかる。従って、溶液化の操作が不要な放射 化分析はこれらの試料の微量分析に適している。

2. 毛髪試料の放射化分析

初年度の予備実験としておこなった、毛髪試料 の放射化分析の操作について説明する。こまかく 切り刻んだ毛髪試料を 60℃で4時間乾燥させて、 秤量した。ポリエチレンで3重にシーム封入した 約 50 mg の毛髪試料を、国立環境研発行の標準試 料 NIES CRM No.13 と共に、入れたカプセルを、 JRR-4 の管照射設備 T-A で 20 分 間照射して、1 週間ほど冷却後に発送、北大へ搬送して、北大の 管理区域内で詰め替 えて1試料あたりそれぞれ 3時間測定を行なった。さらに1ヶ月以上冷却し た後、1 試料あたりそれぞれ6時間測定を試みた。

当初は最初の測定前の冷却期間は3日ほどに して、大学開放研にてCd-115(半減期約2.2日) やAs-76(半減期約1.1日)などの有害金属の定 量を行なうつもりだったが、Br-82(半減期約1.5 日)の放射能が強くよい定量値が得られないこと が判明した。また、北大に輸送するには1週間近 く冷却する必要があった。特に標準試料 NIES CRM No.13には臭素が通常の毛髪試料よりも一桁以上 多く約百 ppm 含まれているため、放射化分析の中 寿命核種測定の標準試料としては適さないこと がわかった。パーマや毛染めなどをしていない人 間の通常の毛髪中の臭素濃度は数 ppm 程度である ため、標準試料 NIES CRM No.13 はパーマや毛染 めをした成人女性の毛髪を主な原料にして作成 されたのだと推測している。

そこで臭素含有量が3ppm 台の国際原子力機関 発行の標準試料 IAEA-085 を注文したが、この試 料の含有量の推奨値で検量線を確定しないでほ しいと、とその標準試料の事務局から試料発送時 にメールで念を押された。大森先生によると「毛 髪の標準試料の含有量は不均一性が大きい」とい うことであるので、推奨値に自信がないらしい。 検量線を作成するには原子吸光用標準溶液の混 合液を乾燥させて作成して、マトリックス効果の 小さい放射化分析の特徴を生かして、標準試料は 毛髪に限らずに目的微量元素の濃度が定量でき る程高く、かつ均一性が高くて推奨値の信頼きる 生体標準試料も併用する事が必要であることが 分った。

一方、1ヶ月冷却後に測定した長寿命生成核種 については、有害元素に限って列挙すると、 Hg-203(半減期約47日)、Sb-124(半減期約60 日)、Fe-59(半減期約45日)、Zn-65(半減期約 245日)、Cr-51(半減期約28日)などの多数の元 素のピークが確認できた。ただし、20分照射後に 1 試料1万秒測定で、定量できた生成核種は Hg-203とZn-65のみ。同じ条件で他の元素も定量 する場合には、高純度石英ガラスに試料を封入し て、6時間照射をする必要がある。

なお、大学院実習で行なった院生6名の毛髪試 料の放射化分析の結果得られた水銀濃度は1名 が1.5 ppmと低かったが、残りの5名はすべて約 3 ppmと定量された。食事の好みを訊ねた所、毛 髪中の水銀濃度が他の人の半分だった1名だけ が魚が嫌いと回答したので、やはり毛髪中の元素 濃度は環境や生活習慣との関連を示しているの だと認識した。

3. ペットボトル樹脂中のアンチモン含有量

ペットボトル樹脂の平面となっている部分を 直径1 cmの円盤状に切り抜いたものを2、3枚重 ねて秤量した試料約 100 mg をポリエチレンで 2 重にシーム封入した放射化試料を、アンチモン原 子吸光分析用標準溶液をろ紙に垂らしてから乾 固することで作成した標準試料や標準堆積物試 料 JSd2 (アンチモン含有量 12.5 ppm ほど)と共 に入れたカプセルを、JRR-3 の管照射設備 HR で 10 分 間照射して、2 日ほど冷却後に発送、北大 へ搬送して、北大の管理区域内で詰め替 えて1 試料あたりそれぞれ 2 時間ほど y 線計測をおこ なった。

分析した日本製品のペットボトル容器の製品 (販売元)は、爽健美茶 500 ml (コカコーラ)、爽 健美茶 2L (コカコーラ)、ビタミンウォーター 500 ml (サントリー)、午後の紅茶 1.5L (キリン)、 午後の紅茶 500 ml (キリン)、C.Cレモン 1.5L (サ ントリー)、ファンタグレープ 500 ml (コカコー ラ)、アルカリイオンの水 2.0L (キリン)、森の 水だより 2.0 L (コカコーラ)、ペプシネックス ゼロ 500 ml (サントリー)、ペプシネックスゼロ 1.5L (サントリー)、小岩井みかん 1.5L (キリン)、 小岩井みかん 500 ml (キリン)、黒松内水彩の森 2.0L (黒松内銘水株式会社)、六条麦茶 2.0 L (カ ゴメ)などで、500 mL 容器は 20 種類の製品を、1.5L から 2L の容器は 21 種類の樹脂中のアンチモンに ついて分析をおこなった。

また欧米の外国製品については、ヴィッテル (フランス)、エビアン (フランス)、ボルィック

(フランス)、コントレックス (フランス)、クリ スタルガイザー(米国)、サンタヤナ(クロアチ ア)、ヤムニッツア(イタリア)、サンベネデット (イタリア)、ウリベード(イタリア)、サンプレ グリノ(イタリア)の10種類の500 mL 容器を、 1L~1.5L 容器についてはヴィッテル(フランス)、 エビアン(フランス)、ボルィック(フランス)、 コントレックス(フランス)の4種類の容器について分析をおこなった。さらに、インドネシアに て販売しているペットボトルはプリマ、オルト、 タング、ビッテ、アクア、クレオ、ピュアライフ (ネッスル)の7種類ですべて2L容器である。す べて1種類の容器について2試料放射化試料を 作成して分析に供した。

分析の結果、外国の PET 容器樹脂には 17 製品 21 種類の容器すべてに、アンチモンが 200-300 ppm 含まれているのにたいして、日本の PET 容器 樹脂の約7割にはアンチモンが 150-250 ppm 含ま れているが、残りの3割にはアンチモンは全く含 まれていなかった。日本の3割の PET 容器樹脂の ポリエチレンテレプタレートの重合剤にはアン チモンではなくゲルマニウムが使用されている と考えてよい。

先行研究(坂本・金子、2007)では、国産 PET ボトル 11 品目中4品目にアンチモンが130~165 ppm、輸入 PET ボトル5品目全てには132~198 ppm が含まれていた、と報告されており、本研究では、 先行研究の結果よりもアンチモンの濃度が高く、 また日本製品ではアンチモンを重合剤として使 用している製品が7割と高い割合となった。外国 製品ではすべてアンチモンが重合剤として使用 されている事は先行研究と一致した。

4. 札幌市清掃工場の飛灰中アンチモン含有量

札幌市には市民からでるゴミ焼却場がいくつ かあるが、その中の最大の施設は、平成14年11 月竣工した札幌市白石清掃工場である。2007年度 のこの工場での一年間のゴミ処理量は219.505 t。 それに対して、札幌市全体では 564,680 t のゴミ を焼却処分しているという事なので、札幌市から 出るゴミの約4割を処理している計算となる。ゴ ミは焼却炉で燃やされて、焼却炉の底にたまる灰 は「主灰」と呼ばれているのに対して、焼却炉内 の空中に浮遊する微粒子からなる灰をフライア ッシュ(飛灰)または「ばいじん」と呼ばれてい る。この白石清掃工場では、この飛灰は消石灰や 活性炭と混合された後に、集塵機のフィルターで ほとんどが捕集されて、外部に排出される量は限 られるそうだ。なお、この飛灰には、焼却炉内で いったん揮発してから冷されていくうちに凝集

した成分が付着するため、多くの場合は有害な重 金属が濃縮している事が多い。しかし、すべての 重金属が飛灰に移行する訳ではなく、飛灰と主灰 の両方に分配されるという。例えば、大阪市の都 市ごみ1トンあたりにはアンチモンは30-44g 含 まれ、焼却されると飛灰中にアンチモンが33-74% 分配されたと推定されている(Watanabe et al.,1999)。もちろん、焼却場によって、重金属 の移動や配分は大きく異なる事もありえる。では、 札幌市白石清掃工場でのゴミ処理過程における アンチモンの挙動はどのようであろうか。

本研究では、2009 年 7 月 31 日と、2009 年 10 月 1 日から 2010 年 2 月 19 日に至までほぼ 2 週間 おきに採取された飛灰 12 試料、および 2009 年 10、 11 月および 2010 年 2 月に採取された主灰 4 試料 について、中性子放射化分析をおこなった。なお、 2009 年 8 月と 9 月は計画補修工事のために白石工 場は稼働を停止していたために、その間は試料も 入手できなかった。

分析法としては、ポリエチレンで2重にシーム 封入した約50 mgの飛灰試料または主灰を、標準 堆積物試料 JSd2 と共に、ろ紙で試料の間を挟ん だ状態で入れたカプセルを、JRR-4 の管照射設備 T-Aで20分 間照射後、1週間ほど冷却後に発送、 北大へ搬送して、北大の管理区域内で詰め替え て1試料あたりそれぞれ3時間測定を行なった。 さらに1ヶ月以上冷却した後、1試料あたりそれ ぞれ6時間測定を試みた。

測定の結果、2009年10月1日から2010年2月 19日までの飛灰試料中のアンチモン平均濃度は、 重量の3割が混合された消石灰と考えて補正す ると、608±144 ppm なのにたいして、主灰4試料 の平均濃度は512±45 ppmとなり、アンチモンの 場合には飛灰と主灰にほぼ半々で分配されるよ うである。これは、大阪の焼却炉での調査結果 (Watanabe et al., 1999)とも同じである。また、 京都市の二つの都市ごみ焼却炉の飛灰中には、ア ンチモンがそれぞれ173 ppm、454 ppm 含まれて いた(Nakamura et al., 1997)と報告されてい るので、後者の測定値とほぼ同じ結果となった。

また、飛灰と主灰とでは、亜鉛、コバルト、鉄、 スカンジウムなどの元素含有量が大きく異なり、 この結果については ICP 発光分析のデータと共に あとで発表したいと考えている。なお、2009 年7 月 31 日の試料のみ、アンチモン濃度が 1240 ppm と10月以降の平均値の2倍近い値を持ってい た。恐らく、札幌市ではゴミの仕分けの仕方が 2009 年の7月から大幅に変わったために、ゴミの 内容物も7月以前と10月以降で大きく変化し た事を反映しているのだろうと推察している。

前節のペットボトル中のアンチモン含有量の 4-6 定量結果から、PET ボトル容器平均アンチモン含 有量を 156 (mg/kg)とする。平成 20 年度札幌市環 境局報告書によると、札幌市 PET ボトル処理量は 5,940 (t)、札幌市 PET ボトル分別回収率は 84 % なので、分別回収されない PET ボトルが一般ゴミ に混じって、全て燃やされると仮定すると、一年 間に札幌市で焼却される PET ボトル予想量は 1134 (t)となる。そうすると、一年間に札幌市で焼却 される PET ボトル由来のアンチモン量の予想量は 1134×156/1000 = 176 (kg)と計算される。この 半分が飛灰に分配されると仮定する。

一方,白石清掃工場の担当者にうかがったところ、1年間に白石清掃工場で生成される飛灰量は4342 t で、白石清掃工場が札幌市の約40%の焼却量を占めることから、1年間に札幌市の清掃工場で生成される飛灰全量は約11,100 t となる。以上の事から、札幌市の清掃工場で生成される飛灰中のPETボトル由来のアンチモン濃度は176×0.5 / 11,100 ≒ 8 (ppm) だと計算される。 つまり、飛灰中のアンチモンのうちのたった1%程度が、リサイクルせずに焼却されたPETボトルという意外な結果になった。恐らく、PETボトルのリサイクルにより作られたプラスチック製品、例えば卵のパックや、難燃助剤としてアンチモンが添加されたプラスチック製品による寄与が大きいのだろうと推察している。

5. その成果の評価と今後の方針

毛髪試料の放射化分析をする場合には、諸先輩 から指摘されたように、アンケートなどの周到な る情報のある試料について系統的に分析する必 要があり、インドネシアなどの地域の試料に着い て分析する際にも留意して行きたい。

PET ボトル容器についての研究結果は、水への アンチモンの溶出実験とともに、成果を発表する 予定でいる。

飛灰試料については現在 MPGA でカドミウムを 分析しており、さらに ICP 発光分析の結果も合わ せて、学術誌に発表する予定でいる。

[参考文献]

Yasutake Akira, Matsumoto Miyuki, Yamaguchi Masako and Hachiya Noriyuki (2004) Current Hair Mercury Levels in Japanese for Estimation of Methylmercury Exposure. JOURNAL OF HEALTH SCIENCE Vol. 50 (2004), No. 2 120-125.

T. Takeuchi, T. Hayashi, J. Takada, Y. Hayashi, M. Koyama, H. Kozuka, H. Tsuji, Y. Kusaka, S. Ohmori, M. Shinogi, A. Aoki, K. Katayama, T.Tomiyama (1982) Variation of elemental concentration in hair of the Japanese in terms of age, sex and hair treatment. J. Radioanal. Chem., Vol. 70 (1982) 29-55.

Matsubara J, Machida K. (1985) Significance of elemental analysis of hair as a means of detecting environmental pollution Environmental Research 38: 225-238.

高橋ユリア、大森左興子(2000)「毛髪の多元素放 射化分析」放射化分析 No. 11. pp. 2-6.

大森左興子(1999)「毛髪の多元素放射化分析--環境汚染物室曝露指標とその生体影響度把握への適用」放射化分析 No. 8. pp. 22-29.

N. Furuta, A. Iijima, A. Kanbe, K. Sakai and K. Sato (2005) "Concetrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. J. Environ. Monit. 7: 1155-61.

坂本広美,金子栄廣(2007) PET ボトルとそのリ サイクル製品に含まれる Sb 及び Ge の定量 環境 化学 17,1-6.

N. Watanabe, S. Inoue, and H. Ito (1999) Mass balance of arsenic and antimony in municipal waste incinerators, Journal of material cycles and waste management Vol.1, 38-47.

K. Nakamura, S. Kinoshita and H. Takatsuki, (1997) The origin and behavior of lead, cadmium and antimony in MSW incinerator. Waste Management, 509-517.

平成 20 年度札幌市環境局報告書 http://www.city.sapporo.jp/kankyo/management/e ms_jigyosha/houkokushoten.html

6. 成果の公表

〔学会発表〕①「札幌市における PET ボトル樹脂 中に含まれるアンチモンの環境動態」 川村英亮、豊田和弘 2010 年 1 月 26 日 放射化分析専門研究会 京都大学原子炉実験所

4-7

カワウ(Phalacrocorax carbo) における有機態ハロゲン(EOX)の体内分布と蓄積特性 Distribution and Accumulation Characteristics of Extractable Organic Halogens (EOX) in Organs and Tissues of Great Cormorant 愛媛大学農学部 河野公栄,松田宗明

<u>はじめに</u>

有機ハロゲン化合物は、環境中で安定しかも生物に対し 毒性影響を及ぼすことから、環境化学の研究分野では喫緊 に検討すべき環境汚染物質として国際的にも認識され、残 留性有機汚染物質(Persistent Organic Pollutants: PO Ps)として地球規模での大気、海洋などの環境レベル把 握と動態解析が行われている。他方、生物に関しても蓄積 レベルの検討が行われ、それら化合物の化学的性質から主 に脂肪組織に蓄積することが明らかにされてきた。しかし ながら近年、ヒト血液中に代表的な有機ハロゲン化合物で ある塩素化ビフェニール(PCBs)の水酸化代謝物(水酸 化 PCBs: HO-PCBs)が、脂肪組織に比べむしろ血液 中に高濃度で存在することが明らかにされ、その毒性影響 が懸念されている。特に欧米では、PCBs汚染魚の多食 者の子供に脳機能の発達障害が観察され、HO-PCBs の影響が指摘されている。実際、ラットを用いた in vitro の試験結果、HO-PCBsが脳神経細胞の樹状突起の伸 長を阻害し、学習能力の低下を招くことが報告されている。 そこで本研究では、PCBs をはじめPOPsの体内濃度が 高い魚食性の野生鳥類であるカワウを対象に、血液試料を はじめ、POPsの蓄積組織として代表的な脂肪組織及び その他の組織・器官について、EOX濃度レベルを比較検 討した。

試料と方法

カワウ試料は、琵琶湖 竹生島において 2006 年 7 月と 2007 年 6 月に、害獣駆除が行われた死亡個体を許可のも とに採取した。これらの採取試料について、解剖によって 組織・器官および血液試料を分取し、分析まで -20℃以下 で凍結保存した。EOX分析は、有機溶媒による抽出後、 無機ハロゲンを除去しポリエチレン管に溶封した後、日本 原子力研究開発機構 JRR-3を用い、INAAを行っ た。中性子放射化等の条件は、ドライアイスで試料を 冷却しつつ、中性子束密度 4.7X10¹³n/cm²・sec で,2 分照射後、直ちに Canberra Model GX1519-7500SL 及び Canberra Model 556A を用いγ-スペクトロメト リーを行った。

PCBs 分析については、EOX 分析用に調製した有機溶 媒粗抽出液の一部を分取しヘキサン洗浄水を加え振とう 後静置し、上層の有機溶媒層を回収した。さらにその有機 溶媒層中に溶存する妨害物質を除去するために濃硫酸を 加え振とうし、酸分解処理を行った。その後、さらに共存 妨害物質を除去するためにアルミナカラムクロマトグラ フィーを行い得られた PCBs を含む溶出画分の濃縮液を ガスクロマトグラフ質量分析計(HRGC/HRMS)を用い、 PCBs を定量した。なお HRGC/HRMS は Agilent 社製 6890 型及び日本電子製 JMS-800D 型を用い、GC 用のキ ャピラリーカラムとして HT-8 PCB(関東化学製、カラム 長 60m, 内径 0.25mm)を用いた。なお分析操作時におけ る分析誤差を明らかにするためにクリーンアップスパイ ク及びシリンジスパイクとして PCBs の¹³C ラベル化合物 を用いた。

結果と考察

分析に供したカワウの全ての組織・器官試料から EOX が検出された。カワウ成鳥(♂)1個体の組織・器官中E OXの濃度範囲は0.70~31 μ g/g (湿重)であり、 最低濃度は腎臓から、最高濃度は脂肪組織から検出された。 ちなみに分析に供したもう1個体(成鳥、♂)も同じく脂 肪組織が高濃度を示し、組織・器官中の濃度分布は同じ傾 向を呈した。図1に、カワウの脂肪組織抽出液に中性子を 照射して得られた γ 線スペクトルを示す。³⁸Cl, ⁸⁰Br, ¹²⁸I のピークを確認することができる。

図2にはカワウ 成熟オス2個体の組織、器官における EOX濃度を示している。脂肪組織で濃度が高いのは、E OXを構成する有機ハロゲン化合物が疎水性で脂溶性に 富むことを示唆している。EOXを構成する塩素、臭素及 びョウ素の濃度関係は、有機態塩素(EOC1)>有機態臭 素(EOBr)>有機態ヨウ素(EOI)を呈し、地殻存在度 と同じ順位であり、これまで検討した他の野生生物や環境

JRR-3、気送管照射施設、環境化学

試料と同じ傾向を示した。ここで、脂肪組織に次いで脳が 高濃度であることは注目に値する(図3)。

脳の組織はトリグリセロールなどの中性脂質の含量は 低く、極性脂肪であるリン脂質の含有量が多いことが知ら

Fig.1 γ -Spectrum of Extractable Organohalogens (EOX) Determined in Fat Tissue of great cormorant.

れている。それらの脂質に親和性の強い有機ハロゲン化合物が脳に蓄積している可能性を本結果は示唆している。

脳には血液・脳関門が存在し生体異物である有機ハロゲン化合物は一般には血液を介した脳への移行は少ないと考えられるが、本結果は脳へ移行しやすい有機ハロゲン化合物の存在を示唆しており、その脳への毒性影響が懸念される。これまで有機塩素化合物(DDTs, PCBs)等の脳への蓄積に関して、脂肪組織に比べ低レベルであることが明らかにされている。したがってこれらの代謝分解物でリン脂質との親和性を獲得した極性化合物が脳に集積している可能性が考えられる。脳中 EOX の TOCI, TOBr, TOI 組成比は TOCI が最も大きく、右図に示すように、TOCI と TOBr、及び TOCI と TOI 間には、組織・器官間で若干異なるものの一定の関係が見られた(図 4)。

筋肉試料に関して、EOX中のEOC1とPCBs中の C1濃度の関係について検討したところ、 EOC1濃度 がPCBs濃度より2桁程度高く、EOC1濃度が高いほ どPCBs濃度も高くなる傾向を呈した(図5)。

以上、本研究で検討したカワウ試料に関して、脂肪組織 中濃度に匹敵する高濃度のEOXが脳組織から検出され、

Fig.2 EOX concentration in tissue and organ.

Fig.3 Distribution of EOX in tissue and organ of Great Cormorant.

脳に集積し易い有機ハロゲン化合物の存在が明らかとなった。その毒性影響が懸念され化学構造の解明が望まれる。 またカワウ試料中のEOX濃度は、他の生物に比較して高 濃度でありEOXによる野生生物汚染研究に関して、カワ ウは絶好の生物試料と云え、新たな汚染物質の存在の確認、 化学構造及びその給源解明に大きく寄与するものと考え られる。

JRR-3、気送管照射施設、環境化学

Fig.4 Relationships between EOCI and EOBr/EOI in Organ and Tissue of Great Cormorant.

Fig.5 Relationships between PCBs and EOCI Concentrations (ng/g wet weight)

研究成果

河野公栄, 森田昌敏, 北部北太平洋で捕獲されたプランク トン及び魚資料中の有機態ハロゲン(EOX)の放射化分析, 2008日本放射化学会・第52回放射化学討論会要旨集, 103, 広島, 9月(2008)

河野公栄, Falandysz, J., 森田昌敏, 中性子放射化法 (INAA)によるバルト海産ネズミイルカ中の有機態ハロゲ ン分析とその餌生物からの濃縮特性, 第45回アイソトー プ・放射線研究発表会要旨集, 153, 東京, 7月(2008)

Kawano, M., Falandysz, J., Morita, M., Instrumental neutron activation analysis of extractable organohalogens in marine mammal, harbour porpoise (Phocoena phocoena) and its feed, Atlantic herring (Clupea harengus), from the Baltic Sea, Journal of Radioanalytical and Nuclear Chemistry, 278, 263-266 (2008)

河野公栄,松田宗明,中性子放射化分析法による環境試料 の有機態ハロゲン(EOX)分析・魚食性野生鳥類カワウ (*Phalacrocorax carbo*)からの検出,平成21年度原子力機構 施設利用一般共同研究成果報告会,東京大学大学院工学 系研究科原子力専攻,東京大学,8月 (2009)

志岐勇馬,河野公栄,松田宗明,森田昌敏,カワウ (Phalacrocorax carbo)の血液、肝臓及び胆のう間におけ る水酸化 PCBs(HO-PCBs)の蓄積特性,環境化学,19, 77-86 (2009)

河野公栄,志岐勇馬,栫 拓也,松田宗明,須藤明子,森 田昌敏,有機態ハロゲン(EOX)のカワウ(Phalacrocorax carbo)体内における組織器官分布.2009 日本放射化学会年 会・第53 回放射化学討論会,講演要旨,75 東京,9月 (2009)

河野公栄,志岐勇馬,栫 拓也,松田宗明,須藤明子,森 田昌敏,琵琶湖産カワウから検出される有機態ハロゲン (EOX)と塩素化ビフェニール(PCBs),第47回アイソトー プ・放射線研究発表会要旨集,154,東京,7月(2010)

JRR-3、気送管照射施設、環境化学

河野公栄,環境化学研究分野における放射化分析の利用 -野生生物から検出される有機態ハロゲン・,日本放射化学 会誌 別冊, 11, 27 (2010) 4-8

ミヤコグサ種子中の微量元素集積に関わる QTL の解析 Analysis of QTL related to trace elements accumulation in seeds of *Lotus japonicus* 筑波大学 アイソトープ総合センター 古川 純

<u>研究の目的と意義</u>

ファイトレメディエーションは有害金属など によって汚染された土壌を対象とした環境浄化 手法であり、植物の金属元素に対する吸収・集積 能力を活用するものである。現在主に用いられて いる客土法などに比べて、環境への負荷が少なく 低コストであることから注目されている。ファイ トレメディエーションによる環境浄化をより効 率的に達成するためには、有害金属への耐性、高 い金属集積能力、バイオマスが大きいといった特 徴を持っている植物を用いることが望ましい。し かしこのような理想的な植物はこれまでに見つ かっておらず、多くの場合、重金属超集積植物と 呼ばれる野生植物が用いられている。重金属超集 積植物は他の植物と比較して100倍以上の重金属 を蓄積する植物であり、現在までに約400種が同 定されている。しかしながらこれらの植物には、 バイオマスが非常に小さい、生育速度が遅い、生 育方法が確立していない、といった問題があるこ とから、現在ではバイオマスが大きく、かつ生育 法が確立している栽培作物において有害金属耐 性・集積能力を強化することが必要であると考え られている。また栽培作物は多くの場合直接食用 に供される植物であることから、金属元素含有量 の制御に関わる遺伝子の同定は、分子マーカーを 用いた育種や品種選抜にも貢献することが可能 である。特に鉄や亜鉛に関しては世界の様々な地 域で欠乏症に悩まされていることから、これらの 蓄積に関連する遺伝子の同定は人間にとっても 必須元素の摂取といった観点から大きな意義が ある。そこで本研究では分子生物学におけるマメ 科のモデル植物であるミヤコグサ (Lotus japonicus) を用いて、金属集積能力に関わる遺伝 子の同定を目的とした解析を行った。またミヤコ グサで同定された遺伝子は、染色体の類似性を利

用してダイズでも取得が容易であることから、よ りバイオマスの大きいダイズを用いた環境浄化 やダイズ種子中の金属元素含量の制御に向けた 重要な情報を与えるものである。

<u>どのように行ったか</u>

先行研究からミヤコグサの主要実験系統であ る Miyakojima MG-20 と Gifu B-129 (図 1) の 間では、亜鉛を含む複数の金属元素の集積能力に 差があることが示されていたため、本研究ではこ れらの系統の交配により作成される組換え自殖 系統を対象とした元素集積量の解析を行った。測 定結果から亜鉛を主としたミヤコグサ種子中の 金属集積を司る遺伝子座を明らかにすることで 微量金属元素の蓄積に関連する遺伝子の同定を 試みた。植物の金属集積は複数の遺伝子によって 制御され、個々の遺伝子が作用することで相加的 な形質を示すと考えられる。このような場合、金 属集積の形質を左右する個々の遺伝子座は QTL (量的形質遺伝子座)と呼ばれ、QTLを明らかに することで機能している遺伝子の存在する領域 を特定する QTL 解析という手法が広く用いられ ている。QTL 解析を行うためには、金属蓄積量に 差がある親を交配した後代が必要となるが、ミヤ コグサはナショナルバイオリソースプロジェク トにおけるバイオリソースの収集・保存・提供の 対象植物であり、Miyakojima MG-20 と Gifu B-

http://www.shigen.nig.ac.jp/bean/lotusjaponicus/top/top.jsp 図 1 ミヤコグサ主要実験系統 左: Miyakojima MG-20、右: Gifu B-129

JRR-3、PN-1&2、放射化分析 (ライフサイエンス)

129 を親とした組換え自殖系統(<u>R</u>ecombinant <u>Inbred Lines; RILs</u>) 205 系統が提供されている。 組換え自殖系統は純系間(ここでは Miyakojima MG·20 と Gifu B·129 間)の交配を行い、その子 孫について個々の植物体の自殖による遺伝子型 の固定が行われた系統である。これらの系統では、 全ゲノムをカバーする分子マーカーによって、ど の組換え自殖系統のどの部位が Miyakojima MG·20型の遺伝子であるか、あるいはGifu B·129 型遺伝子であるかといった遺伝子型についての 情報が決定されている。また、提供される組換え 自殖系統の種子は、同一土壌、同一環境で採取さ れており、分譲された種子をそのまま元素量の比 較に用いても遺伝子型による表現型として解析 することが可能という利点がある。

これらの種子における金属元素含量を、非破壊 での高感度測定が特徴である中性子放射化分析 法により解析した。各系統の種子を高純度ポリエ チレン製のシートに封入し、それらをさらに気送 管用のアウターキャプセル内に入れて照射を行 った。系統別種子試料の最低重量は 20 mg(10 ヶ以上の種子を含む)であり、照射時間は 17 分 とした。日本原子力研究開発機構の研究炉

(JRR-3)において中性子線(中性子束: 5.2×10¹³) neutron cm⁻² sec⁻¹) を照射し、放射化された試料 から発せられるガンマ線を Ge 半導体検出器を用 いて検出することにより金属元素含量の定量を 行った。本研究で対象とするミヤコグサの種子は 堅い種皮に覆われていることから酸による分解 に対して強固であり、完全に溶解することは困難 である。そのため一般的な原子吸光分光法などに よる測定では正確に定量できない可能性がある。 特に微量金属元素の蓄積に関しては種子中での 局在部位が明らかでないことが多いため、試料調 整時の損失を最小限にするためには種子そのも のに含まれる全量を非破壊で測定することが望 ましい。また放射化分析では着目している元素以 外にも多くの元素について同一サンプルで測定 することが可能であるため、必ずしも意図してい なかった元素の集積について新しい事実が見つ かる可能性がある。マメ科植物においてはこれま でにもダイズで亜鉛とカドミウムの集積に相関 があることが報告されるなど、共通の機構によっ て複数の元素が集積されている可能性があるこ とから、本研究でも他元素の集積との相関につい て着目した。

どのような成果を得たか

本測定により K-40, Fe-59, Co-60, Zn-65, Sn-177m, Tl-208, Bi-214の7核種の同時測定が 可能であり、このうちMiyakojima MG-20とGifu B-129で集積量に差が認められた元素はCo, Zn, Snであった。CoはMiyakojima MG-20におい てGifu B-129の2.9倍の集積量が示され、Znと Snでは逆にGifu B-129においてMiyakojima MG-20のそれぞれ1.5倍、1.4倍の集積量であっ た(図2)。

これら3元素について RILs からZn について 43系統、Co,Sn について29系統を用いた測定 を行い、元素集積の原因となる遺伝子の位置情報 を得るQTL解析を行った。各系統の元素含量を 図3に示す。ソフトウエア(j/qtl v1.2.1)を用い てそれぞれの原因遺伝子が座乗している可能性 のある位置を解析したところ、まだ十分な精度に は達していないものの、Znの集積に関連する遺 伝子が第2染色体の約23.6-29.1 cMに、CoとSn の集積に関連する遺伝子がそれぞれ第3染色体の 約55.1-70.4 cMと82.4-89.9 cMの位置に存在す ることが示唆された(図4)。ミヤコグサのゲノム 情報からこれらの位置に座乗すると考えられる

JRR-3、PN-1&2、放射化分析(ライフサイエンス)

金属イオン輸送体をコードする遺伝子を検索す ると、*HMA2*(第2染色体24.1 cM)、*MTP1*(第 3染色体58.2 cM)、*CHX19*(第3染色体87.5 cM)、 *CHX28*(第3染色体88.2 cM)が存在していた。 特に Zn の QTL と一致している *HMA2*は種子へ の金属輸送に関与することが示唆されている遺 伝子であり、Zn 集積を制御している可能性が高 いと考えられる。

<u>成果に対する評価</u>

本研究に関連して理化学研究所のサイクロト ロンにより製造された ⁶⁵Zn を用いたトレーサー 実験により、ミヤコグサ幼植物における経根 Zn 吸収速度の解析も行った。水耕栽培により約4週 間植物育成器の中で育成し、生育段階の揃ってい

る個体を選抜して 65Zn を含む水耕液に移し換え た。2日間の処理を行った後に収穫し、地上部と 根に分割してそれぞれに含まれる 65Zn の量をガ ンマ線量により測定した。こちらの解析でも地上 部において Miyakojima MG-20 に比べ Gifu B-129 で約 2.3 倍の Zn 吸収が認められ、同じく RILs から 20 系統について測定し QTL の候補を 得たところ、第2染色体の約11 cMの位置にZn 吸収速度の差異を司る遺伝子がある可能性が示 唆された(図4)。この位置は先の種子へのZn 蓄 積に関与すると考えられる QTL とは異なってお り、地上部への Zn 輸送と種子への Zn 蓄積は異 なる遺伝子によって独立に制御されていること が示唆された。また Zn と Sn はともに Gifu B-129 で高い蓄積を示したが、QTL は異なっており、独 立に制御されているものと考えられる。これまで のところ同一の遺伝子により複数の金属元素の 蓄積が共通に制御されていると考えられるよう な QTL は得られていないが、系統数を増やした 解析により新たな QTL が得られる可能性もある ことから今後も着目していく。

本研究により特定された QTL に金属輸送に関 与すると考えられる輸送体遺伝子の存在が予測 されたことから、それらの発現ならびに機能解析 を行うことで各元素の集積様式の違いの原因と なる遺伝子を特定することが可能になるものと

JRR-3、PN-1&2、放射化分析(ライフサイエンス)

考えている。また放射化分析で得られた QTL と トレーサー実験から得られた QTL が異なってい ることから、測定対象とする成長段階や組織、あ るいは元素の総量であるか吸収速度であるかと いった観点が異なった解析を行うことで、同一元 素の集積でも品種間差の原因となる遺伝子が異 なることが示唆された。このことから単純な地上 部への金属輸送の制御のみでは種子や可食部の 金属含量を制御出来ないことを示しており、個々 の役割を担う遺伝子を同定し、それぞれの遺伝子 の機能を詳細に検証する必要があることを示し ている。本研究によりそれらの対象となる遺伝子 の候補を複数得ることができた。

<u>今後の方針</u>

これまでの解析から、Zn, Co, Sn の集積に関連 する QTL が得られている。しかしながら特定さ れた領域がまだ広範囲にわたるため、金属集積を 制御する遺伝子を同定するに至っていない。継続 して組換え自殖系統の解析を進めることにより、 それぞれの染色体上の金属集積関連 QTL の領域 を狭め、精度を高めていく。また QTL 解析は複 数の遺伝子座が関与する場合を想定した解析で あるが、得られた QTL は Zn, Co, Sn それぞれに ついて単独である。これは解析に用いた系統数が 少ないことで統計上有意に同定される QTL が少 ないためであり、系統数を増やしていくことで新 たな QTL が得られるものと考えている。これま で Ge 半導体検出器の占有可能時間が主な律速要 因となっていたが、平成22年度に筑波大学にお ける Ge 半導体検出器の整備が進む予定であるこ とから、より一層の解析系統数の確保が可能にな るものと考える。これによりミヤコグサのナショ ナルバイオリソースプロジェクトにおいて用意 されている205系統のうち入手可能な系統を全て 解析することで、より高精度な QTL 解析を行う こととする。また金属集積関連 QTL を狭めるた めの測定を継続しながら、得られた QTL の情報 からダイズ種子における金属集積について解析 を行う。ミヤコグサとダイズは同じマメ科の植物 であり、染色体間に相同性があることが報告され ている。ミヤコグサで得られた QTL 情報からダ イズの染色体で関連遺伝子が座乗していると考 えられる部位を推定し、ダイズにおける種子中の 金属集積も同様に制御されているか検証する。ダ イズにおいては組換え自殖系統が複数整備され ていることから交配に用いた親株の表現型が Miyakojima MG-20 と Gifu B-129 と類似な組み 合わせを選んで解析を行う。

<u>成果の公表</u>

学会発表等
1)各種放射線計測手法を用いたミヤコグサにおける金属集積機構の解析
古川純¹、石本光憲²、佐藤忍¹
¹筑波大・生命環境,²東京大・工学系原子力
日本アイソトープ協会オータムスクール
(野田市、平成21年10月31日)

2) Quantitative trait locus analysis for seed zinc accumulation in model legume, *Lotus japonicus*

古川純1、石本光憲2、佐藤忍1

1筑波大・生命環境,2東大・工学系原子力

Asia-Pacific Symposium on Radiochemistry '09 (米国・Napa、平成 21 年 12 月 1 日)

4-8

JRR-3、PN-1&2、放射化分析 (ライフサイエンス)

ディーゼル排気粒子(DEP)に含まれる微量金属の分析と生体影響に関する研究 An analytical study on biohazardous trace metals in Diesel Exhaust Particles (DEP) 笠原 茂、野矢 洋一、関 興一、久下 裕司 Shigeru Kasahara, Youichi Noya, Koh-ichi seki, Yuji Kuge

> 北海道大学アイソトープ総合センター Central Institute of Isotope Science, Hokkaido University

1. はじめに

我々は、これまでにディーゼル排気微粒子(D EP) 中の生物活性物質探索のために、エストロ ゲン活性および血管弛緩作用を指標として、DEP を、ヘキサン、ベンゼン、ジクロロメタン、メ タノール、アンモニア水、塩酸と、無極性から 極性へと連続的に溶媒抽出を行ない、更に、細 分画を行ない、種々の化合物を見出して来た (アルキルジベンゾチオフェン類、フェナンス レン誘導体、アルキルトリメチルベンゼン誘導 体、ベンゼンカルボン酸類)。特に、ニトロフ ェノール類は血管弛緩作用を有することが見出 され健康障害との関連が注目された。さらにニ トロフェノール類のうち、4-ニトロフェノール (pNP)、2-メチル-4-ニトロフェノール(2M4N P)、3-メチル-4-ニトロフェノール(3M4NP)およ び4-ニトロ-3-フェニルフェノール(4N3PP)は、 血管弛緩作用のみならず、生殖器系、内分泌系 への影響も確認され、これらのヒトへの影響お よび環境への負荷等について明らかにすること は緊急の課題であると考えられ、ディーゼル排 気から排出されているニトロフェノール化合物 の定量的分析を我々のグループが開発した迅速 かつ簡便な測定法(分析法)をもちいて、排気 粒子のみならずガスについても実施した1)。その 結果、粒子(DEP)、ガス(Gas)のいずれにおいて も多量のニトロ化合物が環境中に排出されてい ることを明らかにした。その結果は、Table 1, Table 2に示す。

Table 1 粒子(DEP)

定量値(µg/g DEP)						
mNP	٥NP	pNP	4N3MP	4N2MP	4N3PP	回収率
7.9	8.6	174	65.8	67.1	44.7	0.9

 $\mathsf{mNP}: \ 3\text{-}{=}\ \mathsf{h}\ \mathsf{p}\ \mathsf{J}\ \mathsf{-}\mathcal{I} \wedge \mathsf{p}\ \mathsf{ONP}: \ 2\text{-}{=}\ \mathsf{h}\ \mathsf{p}\ \mathsf{J}\ \mathsf{J}\ \mathsf{-}\mathcal{I} \wedge \mathsf{P}$

Table 2 ガス(Gas)

定量値(μg/m³)					
mNP	oNP	pNP	3M4NP	2M4NP	4N3PP
ND	6.3	11.7	3.4	1.2	ND

このように排気ガス及び排気粒子中の健康影響 有機物資の分析について大きな前進が見られた。 近年、DEPの健康影響物資として、ガスあるい は粒子とともに、PN2.5といわれる名の粒子の健 康障害因子としての重要性がにわかに注目され るようになってきた。ナノ粒子は低分子有機物 の小さな集合体からなっているものと推測され るが、その粒子の核として金属の微粒子などが 考えられ、DEP中の金属について明らかにするこ とに興味がもたれた。

我々は、平成7年度から、コバルト(Co)の植物 体内における分布状態や集積の機序について明 らかとすることを目的としてこれまでに、放射 化分析法-イメージングプレート画像解析法 の組み合わせにより、Coと亜鉛(Zn)の葉内分 布を明らかにした。

この方法を適用し、DEP、およびエンジンオイ ルに含まれる環境汚染微量金属の分析を目的に 本研究を実施した。

2. 実験

ディーゼル排気 (DE)の捕集は国立環境研の 装置を用いて行った。DEをステンレス製の希釈 トンネル (直径 30 cm)に導入し、清浄空気で 3倍希釈したのち、概ね、35℃に保たれた希釈 トンネル内を3.6m³/minの流量で流した。粒子

JRR-3 T-パイプ 放射化分析 (環境)

状物質は希釈トンネル内で沈着、捕集した。捕 集した粒子状物質に熱中性子を照射し、放射 化を行った。なお、放射化は日本原子力研究 開発機構原子力科学研究所で行った。放射化 された試料中のインジウム(In-116m)、ヒ素 (As-76)、マンガン(Mn-56)、マグネシウム (Mg-27)、クロム(Cr-51)、鉄(Fe-59)、亜 鉛(Zn-65)、コバルト(Co-60)をGe半導体検出装 置(SEIKO EG&G社製)で定量した。

3. 結果

DEPに含まれている金属元素重量をTable 3、 エンジンオイルに含まれている金属元素重量をT able 4に示す。

Table 3(DEP)	重量:μg
照射施設:日本原子力研究開発機構内原子炉	3号炉
照射日:平成21年1月27,28日	
中性子照射時間:5分照射*又は20分照射**	
試料 (DEP) の重さ:1g	

	DEPの採取年月日				
金属元素	H10.3	H12.1	H12.4	H17.12	
インジウム* (In-116m)	ND	ND	ND	ND	
ヒ素* (As-76)	4.9	3.1	2.6	4.0	
マンガン* (Mn-56)	0.3	0.2	0.2	0.4	
マグネシウム* (Mg-27)	155.3	155.8	192.5	141.4	
クロム** (Cr-51)	129.0	26.33	53.67	43.55	
鉄** (Fe-59)	96.3	49.8	ND	113.1	
亜鉛** (Zn-65)	137.60	323.8	378.8	259.3	
コバルト** (Co-60)	0.1	0.1	0.9	0.1	

Table 4(エンジンオイル)

重量:μg

照射施設:日本原子力研究開発機構内原子炉 3号炉 照射日:平成22年3月12,18日 中性子照射時間:30秒照射*又は及び20分照射** 試料(エンジンオイル)の容量:30m1				
	エンジンオイルの状態			
金属元素	使用前	使用後		

インジウム* (In-116m)	ND	2.0	
ヒ素* (As-76)	ND	ND	
マンガン* (Mn-56)	0.1	0.3	
マグネシウム* (Mg-27)	42.1	14.0	
クロム** (Cr-51)	1.3	3.0	
鉄** (Fe-59)	ND	ND	
亜鉛** (Zn-65)	538.2	553.6	
コバルト** (Co-60)	ND	0.1	

Table 3に示したように、DEP中からはヒ素、マ ンガン、マグネシウム、クロム、鉄、亜鉛、コ バルトが検出された。一方使用後のエンジンオ イルにはTable 4に示したようにDEP中に含まれ ていたマンガン、マグネシウム、クロム、亜鉛、 コバルトのほかにインジウムが検出された。こ のうちインジウムとコバルトを除くといずれも 使用前のエンジンのオイルに含まれているもの であった。それに対しヒ素は使用前、使用後い ずれのエンジンオイルからも検出されなかった。 DEPに含まれていたヒ素は、排出基準値が低く、 健康障害への影響も大きいので、環境中に排出 することを極力減らすことが求められている金 属である。これらの結果は、DEPの生体影響に関 する研究は有機分子についてのみならず、微量 金属についてもなされる必要があることを示し ている。

参考文献

 Y Noya, K Seki, et al., Improvement of an efficient separation method for chemicals in diesel exhaust particles: analysis for nitrophenols, ESPR (Environmental Science and Pollution Research), 15 (4),318-321 ,2008 4-10

ガンジス川流域のヒ素汚染地域の土壌中のヒ素分析

宮崎大学産学連携センター 田辺 公子

(1) 研究の目的と意義

近年、ガンジス川をはじめとする大河流域での 地下水ヒ素汚染が大きな社会問題となっている。 第二次大戦までは、川や溜池などの地表水を飲料 水としていた住民が、保健衛生上の理由等で UNICEF によって掘削された井戸を利用し、飲料水 の大部分を井戸水で賄うようになった。しかし、 その井戸水がヒ素によって汚染されており、これ を飲料水とした住民の健康が害され、慢性ヒ素中 毒患者を発生させ、皮膚障害、内臓障害、悪性腫 瘍等の障害を引き起こしている。またそのヒ素の 起源はヒマラヤ山脈などでの中世代後期の造山 運動によって噴き出たマグマ中のヒ素が風化し て大河によって運ばれて中・下流域に堆積したこ とに由来し、さらに何らかの機構によって土壌中 のヒ素が地下水に溶出し地下水砒素汚染が発生 したと考えられている。それゆえ地下水砒素汚染 はヒマラヤ山脈などを源流とするガンジス川や 黄河などのアジアの大河流域の広範囲に共通し た問題となっている。さらにそれらの地域の多く は発展途上国であり、自国での解決が大変難しい 状況にある。図1にアジア地域のヒ素汚染地図を 示す。

図1 アジアのヒ素汚染地図

(字は読めないが、図からヒ素分布を読み取って 頂けると期待する。なお、図はアジア砒素ネット ワークの作成。) 一方、宮崎大学グループはこれまで宮崎県土呂 久鉱山からの流出するヒ素被害の調査および患 者の支援に取り組み、解決に貢献してきた。この 知識と経験を生かして 1997 年よりガンジス川流 域 (バングラデシュ、ネパール、インドなど)の ヒ素汚染地域において、各種調査研究を行ってき た。これまでに、バングラデシュ、ジェソール県 において、ヒ素の溶出が地下水流の地層中での還 元状態で生じていることを明らかにした。また、 その溶出機構を逆に利用した簡易ヒ素除去装置 の開発を行い、現在、バングラデシュで約 100 基 が稼動している。一昨年度からは JICA と共同で、 インド、ウッタラプラデシュ州において、調査研 究を行っている。

そこで本研究は上記調査研究の一環として地 下水ヒ素汚染調査と合わせて調査地域のボーリ ングなどによって土壌試料を採取して土壌中の ヒ素含有量分析を組織的に行うことを目的とす る。これらを通じて地質層序を知り、さらに溶出 機構の解明、さらに地下水砒素汚染への対策に貢 献する事を期待する。本研究は、学術的な研究の 意議に加えて、健康被害の原因解明による人命救 助への貢献、国際貢献などの意議がある。

(2) 研究方法

平成 20 年 12 月に研究協力者の瀬崎らが JICA と共同してガンジス川流域のインド国ウッタル プラデシュ州バライチ県テジュワプル郡チェト ラ村において 200~250m 深さまでのボーリングを 2 箇所行い、数百サンプルの土壌を採取し、日本 国内に持ち帰った。図 2 にボーリング調査の様子 を示す。平成 21 年にこれら採取土壌試料につい てヒ素含有量分析を行った。ヒ素含有量分析は原 子力科学研究所 JPR-3 の PN-1 気送管照射を用い て行い、また宮崎大学において並行して酸分解に よる処理後原子吸光分光光度計を用いた化学的 な分析を行い、これらの結果の比較検討を行った。

JRR-3、気送管照射装置(PN-1)、放射化分析(環境試料)

図2 チェトラ村でのボーリング調査の様子

なお、宮崎大学ではこれまで上記の化学的分析 によってヒ素含有量分析を行ってきた。しかし今 回組織的なボーリング調査によって分析試料数 が一気に増え、また海外で採取した試料を国内に 持ち帰る必要上輸送する試料量を少なく抑えた い事などから化学的分析に対して中性子放射化 分析の

- (i) 試料の特別な前処理を必要としない、
- (ii) 試料中元素の絶対含有量分析ができる、
- (ⅲ) 少量の試料による高感度計測が可能、

(iv)1試料あたりの測定時間もそれなりに短い、 という利点を考え、今回の中性子放射化分析によ る共同研究を申請した。しかし一方で中性子放射 化分析にも不利とまでは言えないが試料を入れ るポリエチレン袋の作成および試料の袋への封 入作業が必要であり、さらに原子炉中での中性子 照射の熱流入による水蒸気生成による袋の破裂 を防ぐために試料を十分に乾燥させる必要など があり、特別ではないがそれなりの前行程は必要 である。だが何より中性子放射化分析では試料中 の測定含有元素の絶対量を曖昧さなく物理的に 測定できる点は分析手法として絶対的強みであ る。ただ逆に測定対象の化学形態を全く区別でき ない点は不利な点である。化学形態についてはや はり化学的分析を必要とし、両者の相補的な測定 が必要と言える。

続いて今回の測定試料作成の手続きを説明す る。今回ボーリングした土壌試料は大部分が砂状 であり、地面から引き抜く際にあふれ出る地下水 に触れながら採取する形となったので、いずれの 深度の土壤試料も同じ地下水に浸っている。そこ で土壌試料を蒸留水を用いて洗浄し、濾過されて 出てくる水の色が十分に透明になるまで繰り返 した。これを各試料毎に乾燥、計量の後、不純物 を含まない高純度ポリエチレンシートをポリシ ーラーで加工した袋に3重に封入した。最も外側 の袋は原子炉での中性子照射の後に開封して別 の袋と取り替えるが、内側の2重の袋は最後まで 密封したままとする。なお2 重目の袋は、1 重目 の袋が仮に残存水成分の膨張によって起こった としても試料が外に出ないための保険である。平 成21年度は2回の中性子放射化分析を行ったが、 測定で1重目の袋が破れることはなかった。 試料 量は1回目は100mg程度、2回目は150mg程度と した。また標準試料としてろ紙に 100ppm ヒ素標 準液を 0、5、10、15 マイクロリットル吸わせて 乾燥させたものを作成し同様に袋に密封した。

さらに作成した試料は宅配便で大学開放研究 室に送り平成21年6月と平成22年3月の計2回 中性子放射化を行ってもらった。中性子照射は3 号炉 PN-1 気送管照射装置を用い、アウターキャ プセルの上下に試料袋を充填した。照射時間はそ れぞれ10分、15分とし、冷却時間をそれぞれ3 日半、5日半程度とした。今回の測定で最も大き なバックグラウンドとなった元素は予想通りナ トリウムであった。冷却後は大学開放研究室実験 室においてポリエチレン袋移し替え、測定器への 設置後、試料の自動交換ロボットシステムを用い

JRR-3、気送管照射装置(PN-1)、放射化分析(環境試料)

て試料を自動的に交換しながら高純度ゲルマニ ウム検出器を用いて1試料あたり30分から50分 間計測を行った。

今回の測定対象元素はヒ素であるが、反応過程 を確認しておくと中性子を捕獲したヒ素元素は 以下の過程を経て崩壊する。

n + ⁷⁵As → ⁷⁶As (中性子捕獲) ⁷⁶As → ⁷⁶Se^{*} + e + ν (β崩壊) ⁷⁶Se^{*}→ ⁷⁶Se+ γ (γ崩壊)

なお⁷⁶As の半減期は 1.078 日である。また今回ガ ンマ線放出割合の最も大きな 559keV ガンマ線の 計数値を利用した。図 3 に今回測定したガンマ線 スペクトルの一例を示す。

図3 ガンマ線スペクトル

(左図が測定試料、右図は標準試料。矢印は 599keVの光電ピークを示す。)

次にガンマ線計測後のヒ素含有量決定の基準 となる標準試料の検量線結果を図4に示す。結果 は十分に満足できる直線性を示している。検量線 はキャプセル毎に決定し、さらにキャプセル内の 上下それぞれでも検量線を求めたが、一つのキャ プセル内の上下での検量線の有意な差は認めら れなかった。

(3) 研究成果

先に述べた方法を用いてボーリングによって 採取した土壌試料のヒ素含有量分析の結果を図5 に示す。測定結果は地表面に近いほどヒ素含有量 が多い事を示している。さらに図6に同一土壌試 料に対する中性子放射化分析による結果および 化学的分析の結果を示す。化学的分析は同一土壌 試料に対して独立した分析を2回行った。

(横軸は地表面からの距離、縦軸はヒ素含有量)

図6 平成22年3月の測定結果および化学的分析 結果との比較

(系列1とあるのは放射化分析の結果、系列2、3 は化学的分析の結果。横軸、縦軸は図5と同じ。)

JRR-3、気送管照射装置(PN-1)、放射化分析(環境試料)

また平成21年6月の放射化分析の結果を考察し て、平成22年3月の放射化分析では冷却時間を 長く取った。その結果、放射化したナトリウムか らのガンマ線計数率を減じつつ、放射化したヒ素 からの計数率を多く稼げたため誤差が小さくで きた。中性子放射化分析に測定値と化学分析に測 定値では若干の差はあるものの、同一の傾向を示 している。

(4) 研究成果の評価

平成 21 年度の中性子放射化分析による土壌試 料中のヒ素含有量を十分な精度で測定できるこ とが明かとなった。これは今後の測定に十分に期 待し満足できる結果である。また宮崎大学ヒ素放 射化分析研究グループとしても大学開放研究室 の指導を受けて放射化分析の手法を学習、確立す るとともに、放射化分析に携わるメンバーの人数 を増やし経験を積む事ができたことも大きな成 果である。

さらに今回ボーリング調査をしたチェトラ村 での土壌試料中のヒ素含有量の深さ依存性を把 握できたのは大きな成果である。その測定結果は ある意味で予想外のものであった。今回ボーリン グ採取した地点では、当初に予想していた程には 土壌中のヒ素濃度は大きなものではない事が明 かとなった。中性子放射化分析ではヒ素の化学形 態を明かにはできないが、しかしすべての化学形 態の上限値を与えることができるものである。

(5) 今後に向けて

平成 21 年度の測定結果を考慮し、次回以降の ボーリング調査の方法として多くの地点を浅く ボーリング調査する事を検討している。幸いに平 成 22 年から 2 年間 JICA の草の根技術協力事業と して認められ現在インド側の了解を待って平成 23 年にボーリング調査を計画している。チェトラ 村などで並行して行った井戸水のヒ素濃度測定 結果からは必ずしも浅い井戸の地下水のヒ素濃 度が高いとは限らず、深い井戸の地下水ヒ素濃度 の方が高いという結果も得られており、インド調 査地域での地下水へのヒ素の溶出の機構につい ては未だ明かとはなっておらず、継続した調査が 必要である。さらに米、地下水および草などを介 した牛糞などによるヒ素汚染の影響も未知であ り、これらのヒ素濃度測定の必要性も生じている。 合わせて人体のヒ素蓄積と疾病との関係も不明 な点が多く、地域住民の毛髪中のヒ素濃度測定も 必要である。これらの試料の中性子放射化分析に 測定を検討していく。

最後にこの共同研究を進める上での大学開放 研究室の皆様の献身的協力に感謝致します。

「成果の公表」

Publications

T. MATSUDA, Y. MAEDA, I. MIYAHARA, K. OHE, Y. OGAWA, M. SEZAKI, K. SHIOMORI, A. NAKAJIMA, K. TANABE, E. OSADA, SURVEY OF ARSENIC CONTENTS IN SOILS OF THEGANGES RIVER BASIN BY USING NEUTRON ACTIVATION ANALYSIS, Arsenic-Sympo in MIYAZAKI 2010 (2nd International Symposium on Health Hazards of Arsenic Contamination of Groundwater an Its Countermeasures -Expansion of India Project to Asia Area-), 22-23 May. 2010, Miyazaki Kanko Hotel, Miyazaki, Japan. 0-13, pp. 143-144, 2010.

http://www.mrc.miyazaki-u.ac.jp/isas/

4-10

JRR-3、気送管照射装置(PN-1)、放射化分析(環境試料)

This is a blank page.

5. ラジオアイソトープ製造

5. Production of Radio Isotopes

This is a blank page.

5-1

¹⁹⁷Au メスバウアー分光による Au ナノクラスターの研究(2)

¹⁹⁷Au Mössbauer study of Au nano-clusters (2) 京都大学原子炉実験所 小林康浩 東北大学金属材料研究所付属量子エネルギー材料科学国際研究センター 本間佳哉

Au ナノクラスターは Au 原子が数個から数十個集 まったもので、医薬品や触媒と言った実用面だけで なく、純粋な物理的化学的な興味からも注目されて いる物質である。Au 原子のみでクラスターや微粒子 を作成した場合、粒子の表面は溶融状態に近い状態 のため室温でもAu クラスター同士が融合して大き な粒子となっていく。そこでクラスター表面を保護 材と呼ばれる分子(表面活性剤)で覆うことによっ て融合を防止しクラスターとして安定させることが できる。このようなクラスターや微粒子を作成する 手法としていくつかの手法があるが、比較的簡単で 良好なクラスターを得ることができる手法として溶 液還元法がある。この手法はAuイオンと保護材とな る物質が溶解した液体中に還元剤を加え Au を金属 状態にすると同時に保護材で覆うことにより安定し た Au クラスターを作成する。この手法は一度に比較 的大量の粒子を作成できるという長所もある。ただ しこの手法では、大まかなクラスターサイズは Au イオンや保護材の濃度、還元剤の強さなどを調整す ることによってコントロールできるが、サイズが均 一なクラスター試料を作成することは難しい。 佃らのグループではこのようにして作成した Au

図1Au25SG18クラスターの構造。[3]

クラスターを電気泳動によって質量毎に分離し、Au 原子1個のレベルまで大きさをコントロールした粒 子を得ることに成功した[1]。その中でAu原子25 個と保護材となるSG(グルタチオン)18個が結合し たクラスターが非常に安定して得られることが分か った。しかし、その安定の原因やクラスターの構造 は明らかではなかった。我々のグループでは佃グル ープから試料を提供していただき、¹⁹⁷Auメスバウア ー分光からこのクラスターの構造を解明することを 試みた[2]。メスバウアー分光ではそのスペクトルの 分裂の様子やサブスペクトルの面積比からAu原子 の状態やその状態にある原子数の割合をすることが できる。メスバウアースペクトルからAu原子の環境 とその割合を求め、これと計算機による構造シミュ レーションとの比較からその構造を予測した。

同様のAu₂₅クラスターについては後にHeavenら が単結晶のX線構造解析に成功し、その構造が明ら かになった(図1)[3]。残念ながら得られた構造は 我々が予想した構造とは異なったが、得られた構造 から予想されるメスバウアースペクトルは我々が得 たスペクトルと一致すると言える。すなわち、我々 はメスバウアースペクトルから各成分の割合を得た が、その構造の組み立て方に到達できなかったとい うことになる。しかしこの結果から、クラスターの 構造決定に於いてAu メスバウアー分光測定は決定 的とは言えないまでも十分有用であると考えている。

そこで我々はこのAu₂₅クラスターの経験を生かし ながらさらに異なったサイズのクラスターの構造を 明らかにすることを計画した。Au₂₅クラスターは非 常に安定した構造をしており、単結晶を作成するこ とが可能であったが、それ以外のサイズのクラスタ ーは安定性が低い物が多く、単結晶を作成すること は容易ではない。そのため単結晶を得なくとも構造 の予想が可能となるメスバウアー分光は有効な測定 手段となる。

図2 各種デバイ温度における無反跳分率の温度 変化

図3線源(197Pt)の崩壊図

メスバウアー分光は原子核の共鳴吸収を利用した 分光法で、核準位の超微細構造から共鳴核の電子状 態を測定することができる。γ線源に速度を与えて ドップラー効果によってエネルギーを変調してスペ クトルの測定を行う。スペクトルから求められるメ スバウアーパラメータには、原子の価数を反映した アイソマーシフト、測定原子の周囲の対称性を反映 した四極子分裂、磁気モーメントを反映する磁気分 裂などがある。また、スペクトルの形状ではなくス ペクトルの吸収面積として現れるパラメータである 無反跳分率も重要となる。無反跳分率はメスバウア ー効果が起こる確率であり、メスバウアーy線のエ ネルギーが低い場合や共鳴原子の結合が強い(デバ イ温度が高い: 固い) 場合に高くなる。図2にいく つかのデバイ温度における無反跳分率の温度変化を 示す。

メスバウアー分光は一般には⁵⁷Fe核を対象とした 測定が広く知られている。これは⁵⁷Feのメスバウア ーy線のエネルギーが14.4 keVと低く室温で測定が できること、57Fe メスバウアー分光のγ線源の半減 期が270日と比較的長く市販の密封線源を利用でき ること、Fe が科学から産業まで広い分野で用いられ ている元素であることなどによる。¹⁹⁷Au メスバウア ー分光はγ線のエネルギーが77.3 keVと比較的高い ため、試料とy線源を30K以下の低温状態での測定 が必須となる。¹⁹⁷Auメスバウアー分光で用いる装置 は基本的には⁵⁷Fe メスバウアー分光用の物と同様で あるが、試料と同時に線源を冷却できる機構を持っ た特殊なクライオスタットが必要となる。またγ線 源の半減期が18時間と短いため、線源を作成して速 やかに測定を開始しなければならない。線源となる ¹⁹⁷Ptの崩壊図を図3に示す。¹⁹⁷Ptは金属状態の¹⁹⁶Pt に原子炉での熱中性子照射することによって生成で きるため、¹⁹⁷Au メスバウアー分光は研究炉施設の周 辺でのみ測定することができる。本課題では JRR-3 また JRR-4 での中性子照射で生成したγ線源を茨城 県大洗町にある東北大学金属材料研究所付属量子エ ネルギー材料科学国際研究センター(大洗センター) へ送り、大洗センターアクチノイド棟内に設置され た冷凍機付きメスバウアー分光装置を用いて測定を 行う。そのため、測定開始に先立ちアクチノイド棟 での¹⁹⁷Ptの使用許認可量の変更手続きを行ってい ろ。

図4に本課題で得られた¹⁹⁷Auメスバウアースペク トルを示す。スペクトルの中心(速度ゼロ)はAu 箔のスペクトルのピーク位置に定めている。線源は 163 mg の金属¹⁹⁶Pt に対して JRR-3 HR2 水力照射設 備装置で 30 分間照射で作成した。¹⁹⁷Pt の生成量は 照射終了直後で 660 MBq である。この線源を専用便 で大洗センターに送り測定を行った。図4上のスペ クトルはメスバウアー装置の立ち上げ時に試験的に 測定した Au 箔のメスバウアースペクトルで、これに ついては十分な統計精度を得られていると言える。 しかし、図4下のAu₂₅クラスターの試料のスペクト ルは精度が低く、詳細な解析を行うために必要な統 計精度に達していない。このため、この結果につい

JRR-3、HR2水力照射設備、RI 製造

図 4 Au 箔と Au₂₅クラスターの ¹⁹⁷Au メスバ ウアースペクトル

ての論文発表はできていない。

Au₂₅クラスターのスペクトルの精度が低いのはこ の試料の吸収強度がAu 箔のスペクトルから予想し ていた値に比べて非常に低かったためである。メス バウアースペクトルの吸収強度は共鳴を起こす核の 数と無反跳分率の積に比例する。スペクトル吸収強 度が低いということは、何らかの原因によって試料 中のAuの量が減少していた、もしくは無反跳分率が 予想以上に低いという二つの原因が考えられる。試 料中のAuの減少については試料作成過程の検討か ら可能性は低いと考えられるため、無反跳分率の低 下が吸収強度減少の主要な原因と考えられる。

我々はこの無反跳分率の減少の原因を知ることは より良い測定を行うという目的のみならず物理的に 興味がある現象であると考え、次期課題ではこの無 反跳分率についてより詳細に調べることを計画して いる。無反跳分率が低いということはAuクラスター が「柔らかい」ことを示しているが、その柔らかさ の原因について二つの可能性が考えられる。一つは Auクラスター内のAu原子同士の結合が弱い状態、 もう一つはAu原子同士の結合は通常の金属と同等 だがクラスターを取り巻く保護材が柔らかい場合で ある。どちらの場合もAu原子にとっては柔らかい (フォノンを励起しやすい)状態であり、無反跳分 率は下がりスペクトル吸収面積は小さくなるはずで ある。

この二つを区別するため、我々は Au 原子数が異な る Au クラスターでの無反跳分率の測定を計画して いる。もし、先に挙げた原因のうちの後者、すなわ ち Au 原子同士の結合が十分に強く Au クラスターの 周りの保護材が柔らかい場合には、クラスターの大 きさすなわち運動する粒子の質量が大きくなるとフ オノン励起に必要なエネルギーが大きくなり、無反 跳分率は大きくなるはずである。一方、前者つまり Au 原子同士の結合が弱い場合にはクラスターサイ ズが変化しても運動する粒子(この場合はAu原子) の質量に変化は無く無反跳分率の変化は小さいまま と予想される。無反跳分率を求めるためには、Au 量 が正確に分かっている試料のスペクトル吸収面積を 比較することによって求めることができるが、その 温度変化を測定することによりさらにデバイ温度を 求めることができる。図2に示したとおり、無反跳 分率の温度変化はデバイ温度によって大きく異なり、 単なる吸収面積の比較よりもより正確な情報を得る ことができる。デバイ温度とクラスターサイズの依 存性を測定することができれば、小さいサイズでは 分子として振る舞っていたクラスターがサイズの増 加とともに金属的に変化していく様子を見ることが できるのではないかと予想している。

参考文献

Y. Negishi et al., J. Am. Chem. Soc., 127
 (2005) 5261-5270
 K. Ikeda et al., J. Am. Chem. Soc., 129
 (2007) 7230
 M. W. Heaven et al., J. Am. Chem. Soc., 130
 (2008) 3754-3755

成果の公表

本文中にも記したとおり、未だ十分なスペクトル を得ることができていない状態であり、成果とし ての公表は行っていない。

5-1

JRR-3、HR2水力照射設備、RI 製造

This is a blank page.

6. その他

>

6. Others

This is a blank page.
6-1

α線トラックエッチング法による各種金属材料のボロン状態分布の観察 Observation of boron in various steel materials by α-particle track etching method

東京大学大学院工学系研究科マテリアル工学専攻

朝倉健太郎、小関敏彦

Department of Materials Science, Faculty of Engineering, The Univ. of Tokyo K. Asakura and T. Koseki

I.研究の目的と意義

I-1.研究の目的

近年、構造物の安全への配慮が高まり、高強 度・高延性の材料開発に期待がもたれている。 文科省・プロジェクトリーダーの小関敏彦は「超 高強度軽量移動体を可能にする複層鋼板」研究開 発プロジェクトを、H18年度から5カ年計画で分 担してきた。本プロジェクトでは、熱間圧延及び 冷間圧延によって複層鋼板を作製することによ り、①複層組み合わせの設計・選択、②積層数・ 層厚の影響、③各層内の金属組織制御、④複層界 面のミクロ・ナノ組織制御の検討を進めている。 とくに重要な要素は複層化の界面形成に及ぼす 材料の選定と、熱処理の影響は重要なポイントで ある。たとえば硬質金属と軟質金属の組み合わせ、 層厚などが金属ヘテロ界面の強度と延性に大き な影響を及ぼす。ここでは積層構造材の界面強度 を高めるボロンの状態分布を熱処理の視点から 明らかにした。

さらに地球環境問題からCO₂排出量の削減、化 石燃料の節約や高騰を背景に高効率(高温高圧 化)な火力発電プラントが注目されており、 超々臨界圧(USC)火力発電プラントボイラ用 高クロム系フェライト鋼における高強度化が 急がれている。9Cr-W系鋼の長時間強度に影響 を及ぼすCo、Bの影響についてボロンの存在形 態とミクロ組織との対応から明らかにした。

I-2.研究の手段と意義

ボロンのような軽元素を可視的に観察するこ とは容易ではない。軽元素を分析するには電子線 を利用した透過電子顕微鏡(EDS、EELS)、オー ジェ分光分析法、電子線マイクロアナライザー (EPMA)が用いられている。またイオンビーム を用いたイオンマイクロアナライザー(IMMA)、 二次イオン質量分析(SIMS)法などが用いられ ているが、分析精度は低く 0.3~0.1mass%程度で ある¹⁾。 他方、ATE 法はボロン元素のみが ppm オーダ の高感度で検出できるというメリットがある。反 面、定量や存在形態がわかりにくいなどのデメリ ットがある。

鉄鋼材料の端部は熱処理によって、脱 C、脱ボ ロンの影響を受けやすい。このため ATE 用の試 料は、試料中央部より厚さ約 1mm に切り出した 後、さらに試料端を除いて、試料サイズを縦 12mm×横 7mm×厚さ 1mm とした。次に、 12mm×7mm の平面を#180~#1200 のエメリ 一紙を用いて機械研磨を行った後、バフ研磨(1 μ mアルミナ粉)で鏡面に仕上げた。なお、ATE

Fig.1 ATE 法の概略と手順

観察面は熱間圧延の際の圧延方向に対して垂直 面、あるいはクリープ試験片の横断面である。

ボロンに関しては ATE 法を用いて、析出形態 および分布を調べた。ATE 法は、熱中性子照射に よってボロン中に含まれている同位体の 10 B と中 性子の核反応により瞬間的に発生する α 線が、試 料表面に貼り付けた硝酸セルロースフィルムに つけた痕跡を、2.5N-NaOH 液でエッチングした 後、光学顕微鏡を用いてボロン分布状態を観察す ることができる (10 B+ 1 n→ 7 Li+ 4 He (α) 反応)。 ATE 法の概略を Fig.1 に示す。この手法によりボ

ロンの存在位置(粒界、粒内)や存在形態(偏析、 析出)を観察でき、感度も 1ppm オーダのボロン を検出することができる。中性子照射は日本原子 力研究開発機構の原子炉 JRR-4 (3.5MW)と JRR-3 (20MW)を用いた。

Ⅱ.研究成果

研究1:ATE(α線トラックエッチング)法によ る積層母材のボロン分布

1. 緒言

熱間圧延及び冷間圧延によって複層鋼板を作 製する際、複層界面のミクロ組織とボロンの偏析 及び析出(ほう化物の分布状態観察)という視点 から、複層化の界面形成に及ぼす圧延プロセスの 諸条件の影響、圧延後の熱処理の影響などについ て ATE 法を用いて調査した。研究1では積層母 材の熱処理の影響とボロン分布について調査し、 研究2では金属ヘテロ界面の強度と組織的相関性、 積層鉄鋼材料を用いて、硬質/軟質界面における Bの状態分布挙動について明らかにした。

ATE (α 線トラックエッチング)法は、1ppm 濃度以下のボロンでも捉えることのできる情報 源として唯一な実験手段であること、また鋼中ボ ロンの状態分布を観察できることが報告されて いる¹⁾。ボロンは BN、M₃(CB)および Fe₂₃(CB)₆ に固溶して析出することが知られている²⁾。 他方、フェライト組織において強度(とくに降 伏強度)を高め、さらに靱性を高める唯一の方法 はフェライト粒の細粒化である。他方、ボロンは オーステナイト粒界やフェライト粒界に偏析し、 細粒化と焼き入れ性の向上に寄与することが知 られており、その全容を明らかにできる。ここで は各種積層母材を用いて、熱処理の影響を偏析お よび析出状態の視点から実験を行った。

2. 実験方法

Table 1 に示した積層母材を用いて ATE 像の観 察を行った。フェライト系鋼は WT780C、 SCM415、SPCC 及び SUS420J2 である。オース テナイト系鋼はSUS304及びSUS304N2である。 これらの積層母材についてファインカッターを 用いて約 5mm×10mm に切り出した後、900~ 1100℃×5min 保持後、それぞれ水冷(WQ)、空 冷(AC)及び炉冷(FC)の熱処理を施した。そ の後、エメリー紙にて#1000 まで湿式研磨した 後、鏡面研磨を行った。硝酸セルロースフィルム を貼り付け、日本原子力開発機構の照射設備 JRR-3にて40secの中性子照射を行った。照射後、 フィルムのみを剥離し、2.5Nの NaOH 溶液中で エッチング処理を行い、乾燥後、光学顕微鏡でフ イルム表面の ATE 像を撮影した。なお、黒いコ ントラストはすべてボロン由来のコントラスト である。

	С	Si	Mn	Р	S	Cu	Ni	Cr	Mo	V	В	Ν
WT780C	0.13	0.25	0.92	0.012	0.001	0.18	0.02	0.83	0.32	0.02	0.0080	—
SCM415	0.13	0.22	0.66	0.009	0.003	0.02	0.02	0.95	0.16	—	< 0.0001	—
SPCC	0.03	0.01	0.16	0.009	0.010	—	_	—	_	_	< 0.0001	—
SUS420J2	0.32	0.79	0.60	0.025	0.002	—		13.52	_	_	0.0002	_
SUS304	0.06	0.43	1.06	0.023	0.003	_	8.04	18.18	_	_	0.0011	_
SUS304N2	0.05	0.76	1.91	0.029	0.000	—	7.75	18.52		_	0.0005	0.21

Table 1 積層母材の化学組成(mass%)

3. 実験結果

各条件で熱処理した後の ATE 像を Fig.2~ Fig.19 に示す。以下、(1)~(6)に各積層母材につ いての結果を述べる。

(1) WT780C

WT780C にはボロンが 80ppm 添加されている。 900℃加熱では **Fig.2** に示したように水冷(WQ) ~炉冷(FC)の熱処理条件では顕著なボロンの偏 析は認められなかった。1000℃加熱では、Fig.3 に示したように空冷(AC)処理においてフェライ ト粒界へのボロンの顕著な偏析が認められたが、 フェライト粒径に大きな差(再結晶粒と未再結晶 粒の混粒)が認められる。他方、WQ処理におい てはオーステナイト(以下、γ)粒界に相当する

JRR-3 (気送管照射)、JRR-4 (医療用照射)、ATE (α線トラックエッチング) 法、鉄鋼材料、ボロン状態分布観察

6-1

領域に、わずかのボロン偏析が認められる。FC 処理では粒界偏析は極めて少ないながら、析出物 もわずかに認められる。

1100℃加熱では、Fig.4 に示したように 1000℃ と同じように AC 処理ではフェライト粒界へのボ ロンの顕著な偏析および粒界析出、粒内析出物が 認められ、粗粒化した等軸フェライト粒が多数認 められる。FC 処理ではフェライト粒界への偏析、 ないしは粒内にボロンの析出物である M23(CB)6、 Mo2(CB)、V(CN)などが認められるが、種類につ いては特定していない。WQ 処理ではほとんどの ボロンはマトリックス中に固溶しており、ボロン 偏析も極くわずかしか認められなかった。

(2) SCM415

SCM415のボロン量は 1ppm であり、WT780C に比べて約 1/80 と低い。900℃加熱は Fig.5 に示 すようにフェライト粒界へのボロン偏析は少な い。1000℃加熱-WQ、AC 処理では Fig.6 に示 すようにボロン量が少ないせいかマトリックス は"まだら状"に見えるがフェライト粒界にボロ ン偏析が認められる。とくに AC、FC 処理では未 固溶の析出物(ほう化物)が多数認められた。 1100℃加熱-WQ、AC 処理においては Fig.7 に 示すように、フェライト粒界・粒内へのボロンの 顕著な偏析と析出が認められた。FC 処理ではフ ェライト粒界へのボロン偏析は認められず、粒内 に M₃(CB)ないしは Fe₂₃(CB)6 が認められた。

7Q (b) AC (c) FC Fig.2 WT780C における 900℃-5min 加熱→熱処理後の ATE 像

(a)WQ
 (b) AC
 (c) FC
 Fig.3 WT780C における 1000℃-5min 加熱→熱処理後の ATE 像

(a)WQ
 (b) AC
 (c) FC
 Fig.4 WT780C における 1100℃-5min 加熱→熱処理後の ATE 像

JRR-3 (気送管照射)、JRR-4 (医療用照射)、ATE (α線トラックエッチング) 法、鉄鋼材料、ボロン状態分布観察 6-1

- 285 -

Fig.7 SCM415 における 1100℃-5min 加熱→熱処理後の ATE 像

(3) SPCC

ボロン量は<1ppm 以下と低い。SPCC は炭素 量が 0.03mass%と極めて低いため FesC の析出 も少ない。Fe-C 系平衡状態図(フェライトの C 固溶量を 0.0218mass%とした)から「てこの原 理」でパーライトの生成量を計算するとわずかに 1.1%程度で、フェライト量が 98.9%であった。 ほう化物としては Fes(CB)の析出が考えられる。

900℃加熱-WQ、AC 処理は **Fig.8**に示すよう に極わずかの粒界析出(未固溶析出物)が認めら れたが、FC 処理ではフェライト粒界付近が帯状 に太く観察された。これは粒界近傍にボロンが固 溶状態で局所偏析していると考えられるが詳細 についてはわからない。

1000℃加熱-WQ、AC、FC 処理共に Fig.9 に 示すように、ほう化物状の粒内析出が顕著に認め られたが、粒界析出物も認められた。

1100℃加熱では **Fig.10** に示すようにほう化物 がマトリックスに固溶したせいか、フェライト粒 内に見られた粒内析出が減っており、900℃と酷 似した組織になっていた。このため粒界析出が鮮 明に見えるようになった。SPCC 全般について指 摘できることは、顕著な粒界偏析が認められなか ったことである。

JRR-3 (気送管照射)、JRR-4 (医療用照射)、ATE (α線トラックエッチング)法、鉄鋼材料、ボロン状態分布観察

6-1

-Fig.10 SPCC における 1100℃-5min 加熱→熱処理後の ATE 像

(4) SUS420J2

SUS420J2 の化学組成は 0.3C-13Cr であり、典型的なマルテンサイト組織を有している。ボロン 量は 2ppm であった。

900℃加熱では FC 処理を除いて Fig.11 に示す ように、圧延方向に伸びたボロンを含んだ変形帯 が認められる。この変形帯に沿うようにボロンの 偏析、ないしは析出物が観察された。この変形帯 は鍛造時に発生したステンレス鋼の成分偏析が 生じたもの、あるいはγ相中に残留したδフェラ イト相の可能性もあるが詳細は不明である。また、 よく観察するとボロンが偏析したフェライト粒 界も観察できる。

(b) AC (c) FC SUS420J2 における 1100℃-5min 加熱→熱処理後の ATE 像

これらの結果、SUS420-J2 を除いて粒界偏析 に及ぼす焼入れ温度の影響は顕著であった。これ らの鋼は 1000[°]C-5min 加熱の AC 処理で、ボロン の粒界偏析が強かったが、WQ 処理および FC 処 理では粒界偏析は弱かった。これは **Fig.14**(a)およ び(b)に示したように、平衡偏析の可能性が考えら れる。Fig.14(a)の場合は AC 処理で顕著な粒界偏 析が見られ、Fig14(b)の場合では高い焼入れ温度 ほど粒界偏析が強くなる。したがって平衡偏析の 可能性が高い。他方、Williams ら³⁰は Fig.14(c) に示したように焼入れ開始温度の低下に伴いボ ロンの粒界偏析の程度が減少したことによって、 γ 相や α 相に拘わらず熱処理中に非平衡偏析に よって生じると報告している。

したがって非平衡偏析は、空孔-溶質原子複合 対の粒界への移動によって偏析が生じるとされ ている。またコットレルらは「焼入れ時に過飽和 空孔(原子空孔)が粒界に移動するのに伴い、溶 質元素が粒界に移動する非平衡偏析」説を提唱し ているが、熱処理条件を変えて観察した結果、 WT780Cや SCM415 などの鋼は平衡偏析の可能 性が高い。

(5) SUS304

ボロン量は 11ppm と比較的高い。900[°]C加熱で は **Fig.15** に示すように WQ、AC、FC 処理にお いて、等軸粒の形態を有した γ 粒界に顕著なボロ ン偏析と析出が認められた。つまり 900[°]Cではボ ロンは 100[°]の再固溶していないことを示している。 さらに γ 粒内にも M₂₃(CB)6 と考えられる析出物 が多く見られる。結晶粒径は 30~80 μ mで混粒 している。FC 処理では"まだら状"であるが粒 内偏析が見られた。

1000℃加熱-WQ 処理では **Fig.16** に示すよう に γ 粒界に極わずかにボロン偏析が認められる。 AC 処理では 900℃熱処理に比べて γ 粒径が大き くなっており、 γ 粒界へのボロン偏析と析出も認 められる。FC 処理では γ 粒界への偏析と粒内析 出を認めた。一方、1100 $^{\circ}$ -WQ、AC 処理では Fig.17 に示すようにボロンの γ マトリックスへ の固溶が生じ、粒界偏析、粒内析出ともに減少す る。しかし FC 処理では、 γ 粒の粗粒化と粒界へ のボロン偏析と粒内析出を認めた。

(6) SUS304N2

SUS304 と比べると N 量が 0.2mass%と高く、 ボロン量も 5ppm であった。900℃-WQ、AC、 FC 処理ともに Fig.18 に示すように、ボロン偏析 は極くわずかである。1000℃-WQ、AC 処理でも Fig.19 に示すようにボロン偏析はわずかである。 FC 処理では、圧延方向に伸びた未再結晶粒の形 態を呈しており、 γ 粒界へのボロン偏析が見られ る。1100℃-WQ 処理では Fig.20 示すように顕 著な γ 粒界への偏析は認められなかったが、AC 処理においてボロンの粒界偏析がわずかに認め られる。FC 処理になると 1000℃で見られた圧延 方向に伸びた伸長粒界は、等軸 γ 粒に変わり、粒 内析出もわずかに認められるようになる。

Fig.15 SUS304 における 900℃-5min 加熱→熱処理後の ATE 像

Fig.16 SUS304 における 1000℃-5min 加熱→熱処理後の ATE 像

(a)WQ
 (b) AC
 (c) FC
 Fig.17 SUS304 における 1100℃-5min 加熱→熱処理後の ATE 像

JWQ (b) AC (c) FC Fig.18 SUS304N2 における 900℃-5min 加熱→熱処理後の ATE 像

(a)WQ
 (b) AC
 (c) FC
 Fig.19 SUS304N2 における 1000℃-5min 加熱→熱処理後の ATE 像

Fig.20 SUS304N2 における 1100℃-5min 加熱→熱処理後の ATE 像

5. 結論

各積層母材におけるボロンの粒界偏析、粒界析 出および粒内析出の状況を Table 2 に示す。記号 は○:strong (強)、△:weak (弱)、×:very weak (極めて弱)を示している。

 鋼種N0.	熱処埋	条件	粒界偏析	粒界析出	粒内析出
		WQ	×	×	×
	900°C-5min	AC	×	×	×
		FC	×	×	×
		WQ	\wedge	×	×
WT780C	1000°C-5min	AC		×	<u> </u>
1117000		FC	×	×	×
		WO	~	~	~
	1100°C-5min			~	^
	TTUU C-Smin	AC	0	×	
		FC		0	0
		WQ	Δ	×	×
	900°C-5min	AC	Δ	×	×
		FC	Δ	×	×
	_	WQ	Δ	×	×
SCM415	1000°C-5min	AC	\triangle	\bigtriangleup	\triangle
		FC	×	\triangle	\triangle
		WQ	0	\triangle	\triangle
	1100°C-5min	AC	0	Δ	\triangle
		FC	×	0	0
		WQ	Х		\wedge
	900°C-5min	AC	×	$\overline{\Delta}$	\wedge
		FC	~ ~	<u> </u>	
SPCC		10 W0	~		^
	1000°0 F '	WQ	~		
	TUUU C-Smin	AC	×		
		FC	×		
	1100°C-5min	WQ	×	Δ	\triangle
		AC	×	Δ	\triangle
		FC	×	Δ	\triangle
		WQ	Δ	Δ	\triangle
	900°C-5min	AC	Δ	Δ	\triangle
		FC	Δ	×	×
		WQ	Δ	×	×
SUS420J2	1000°C-5min	AC	Δ	×	×
		FC		×	×
		WQ	<u> </u>	×	×
	1100°C-5min	AC	<u> </u>	×	×
	1100 0 011111	FC		×	×
		WO		~	$\hat{\circ}$
	000°C E		0	<u>^</u>	0
	900 C-5min	AC	0	~	0
		FC	0	×	0
0110004	100000 5	WQ	0	×	×
505304	1000°C-5min	AC	0	×	0
		FC	0	0	0
		WQ	×	×	×
	1100°C-5min	AC	\triangle	×	×
		FC	0	Δ	0
		WQ	×	×	×
	900°C-5min	AC	\triangle	×	×
		FC	Δ	×	×
		WQ	Δ	×	×
SUS304N2	1000°C-5min	AC	\triangle	Δ	×
		FC	0	 ×	×
		WO	 	×	×
	1100°C-5min	AC		×	<u>^</u>
				~	
1	1	FU FU		~	

Table 2. 各積層母材におけるボロンの粒界偏析、粒界析出および粒内析出

 \bigcirc : strong \triangle : weak \times : very weak

研究2: ATE 法による積層材のボロン分布と 強度相関性

1. はじめに

研究1では各種積層母材における熱処理の影響 と、ボロン状態分布について調べた。ここでは軟 質/硬質/軟質材をサンドイッチにしたときの 界面(付近)におけるボロンの状態分布を調べた。 とくにオーステナイト(γ)/フェライト界面の偏 析および析出状態を知るためにATE(α 線トラッ クエッチング)法を駆使して実験を行った。

著者らはこれまでも ATE 法は、1ppm 濃度以下 のボロンでも捉えることのできる情報源として 唯一な実験手段であること、また鋼中ボロンの状 態分布を観察できるメリットを報告してきた¹⁾。

2. 実験方法

ファインカッターを用いて積層材の厚さを 1.5 ~2mm に切り出した後、**Fig.21** に示すように短 冊形の試験片 3~4 個をアロンアルファ接着剤で 貼り付けた。したがって観察面はすべて積層断面 である。試料 1 個の大きさは約(5~8) mm× (10~12)mm である。

鏡面研磨後、硝酸セルロースフィルムを貼り付 け、原子力開発機構の医療用照射設備 JRR-4 にて 12h の中性子照射を行った。照射後、フィルムの みを剥離し、2.5N の NaOH 溶液中でエッチング 処理を行い、乾燥後、光学顕微鏡でフィルム表面 の ATE 像を撮影した。なお、黒いコントラスト はすべてボロン由来のコントラストである。

Fig.21 ATE 用積層材の構成

3. 積層試料の種類

#1013 (SUS304:5mm×4L/WT780C:6mm× 3L に Ni 薄板 0.5mm を積層した全7層)を初期 板厚 41mm とし、最終 1mm 厚(圧下率 97.5%)に した。WT780C は初期板厚 9mm、12mm のもの を 6mm に調製して用いていた。ボロン量は 80ppm であった。熱処理は 900℃-2min、1000℃ -2min、1000℃-30min、60min、120min 処理し た試料について調べた。SUS304/SCM415 は 19L と、3L の試料を用いた。SUS304 のボロン 量は 2ppm、SCM415 は<1ppm であった。Ni の ボロン量は不明である。熱処理は 900℃、1000℃、 1100℃で各 5min を施した。

4. 実験結果

(1) #1013 (SUS304/Ni/WT780C)

#1013 の 900℃-2min 水冷材を **Fig.22** に示す。 接着層側から上に向かって SUS304、Ni、WT780 C、Ni、SUS304・・・の順に 7 層が積層されて いる。SUS304、WT780C のボロン量はそれぞれ 80ppm と 11ppm であり、ボロン添加量に大差が ある。しかし水冷のため両者に大きな差は認めら れず、似たようなコントラストを示した。

900℃-2min では顕著な粒界析出、粒内析出は 見られなかったが、SUS304/Ni界面とWT780C /Ni界面にボロンの偏析らしきコントラストが 確認できたが、SUS304 側とWT780C 側に濃化 が見られる。他方、Ni層にはボロンが濃化してい ない白いコントラストが観察された。引張強さは 964MPa、伸びは約21%であった。

結晶粒界へのボロン偏析は WT780C、SUS304 共に低いが γ 粒界への顕著な偏析が確認できた。 興味ある知見は Ni シートを跨いで、 γ 粒界の一 体化が観察できたことである。Fig.23 は、Fig.22 の ATE 像に手書きで γ 粒界をトレースしたもの である。この界面形成は「軟質層と硬質層が再結 晶および $\alpha \rightarrow \gamma$ 変態を経て、 γ 粒の一体化」が見 られた傍証になっている。しかし#1013 積層材に は Ni シート (C の拡散障壁) がクラッドされて いるが、 γ 粒の一体化を阻止することに Ni は関 与していないことを示唆している。

また、1000^C-2min 水冷材も **Fig.24** に示した ようにほとんど同じ結果であったが 304/Ni、 Ni/WT780C 界面の粒界偏析は増した。ちなみに ボロンは γ -Fe 中では侵入型元素として固溶し、 α -Fe 中では置換型元素に近い拡散係数をもつこ とが知られている。

WT780C および SUS304 母材は研究 1 のとき は 900℃-5min 加熱であり、研究 2 では 900℃ -2min の熱処理であり、熱処理時間の差は 3min

であった。Fig.2 の結果から、WT780C ではわず かな粒界偏析、Fig.15 の SUS304 には鮮明な粒界 偏析が観察できた。しかし Fig.22 に示した SUS304 積層材には極わずかの粒界偏析しか観察 できなかった。この ATE 像の差がなぜ生じたの かはよくわからないが、異なるのは加熱時間と観 察方向に加え、5mm から 0.1mm に積層(98%圧 下率)したことである。

-WT780C Ni SUS304 技着層

Fig. 23 Fig.19 のγ粒界(手書き)

WT780C

SUS304

Ni

#1013のN/A(冷延まま)材と1000℃、30~ 120min加熱後水冷したときのATE像をFig.25 ~Fig.27に示す。Fig.22に示した900℃-2minで はNiシートにはボロンの粒界偏析・析出は観察 できなかったが、N/A材(Fig.25)ではNiシー ト中にほう化物(矢印:金属間化合物Ni₃CrB?) のコントラストが見られた。またSUS304/Ni 界面とWT780C/Ni界面にも、わずかなボロン

 $100 \,\mu$ m

 Fig.24
 SUS304 / WT780C·7L : 1000°C·2min→WQ

 Fig.27
 1013 : 1000°C·60min→WQ

Ni

SUS304

JRR-3 (気送管照射)、JRR-4 (医療用照射)、ATE (α線トラックエッチング) 法、鉄鋼材料、ボロン状態分布観察 6-1

100 µ m

Fig.28 1013 : 1000°C- 120min→WQ

偏析と析出が確認できた。SUS304/WT780C 全域 においてボロンの粒界偏析はきわめて弱いこと が確認できた。

1000℃-30min 水冷材 (**Fig.26**) では Ni シート 中の析出物が消失した。これはマトリックスにボ ロンが固溶することによって WT780C および SUS304 の**粒界・粒内析出**がより鮮明になったと 考えられる。WT780C と SUS304 に粒内析出し た結果、引張強さは 964MPa→711MPaに低下し、 伸びは 21%→31%に増した。また積層中央付近 に位置した SUS304 (304 域と表記) には**粒界析** 出 (ほう化物) が多数観察された。

1000℃-60min 水冷材(**Fig.27**)では SUS304 /Ni 界面、WT780C/Ni 界面、さらに Ni シート をはさんだ SUS 側によりボロンが顕著に偏析す る様子を呈した。これは WT780C 側から SUS 側 へのボロンの拡散が生じたものと考えられる。

1000[°]C-120min 水冷村 (**Fig.28**) では SUS304 / Ni 界面、WT780C / Ni 界面はもとより、 WT780C、SUS304 粒内に多くの析出物(ほう化物)が観察できる。ボロンの状態分布から、ほう 化物(M23(CB)6)が析出しない状態の引張強さが 高い傾向を示した。また ATE 法によって積層材 あるいは Ni の有無に拘わらず、 γ 結晶粒が一体 化することが明らかになった。なお、試料中央部 の SUS304 域よりも試料端の SUS304 において、 ほう化物の析出が少ない理由は脱ボロンの影響 と考えられる。

(2) SUS304/SCM415-19LH

SUS304/SCM415 (19 層)の N/A (冷延まま) 材と 900~1100℃-5min 加熱後水冷したときの ATE 像を **Fig.29~Fig.32** に示す。N/A (Fig.29)

Fig.29 SUS304/SCM415-19L:N/A

Fig.30 SUS304/SCM415-19L:900°C-5min→WQ

Fig.31 SUS304/SCM415-19L:1000°C-5min→WQ

では SUS304/SCM415 界面に、バンド状のボロ ンの粒界偏析が鮮明に観察できた。SUS304/SCM 415 界面へのボロン偏析が高い。このことが引張 強さを 1197MPa (伸び 3.6%)に高めた原因と考 えられる。また SUS304 および SCM415 粒内に は多くの粒界析出および粒内析出が見られた。→ 印で表記した SUS/SUS 界面には伸長状のボロ ンを含んだ介在物(ほう化物か、ボロンを固溶し

Fig.32 SUS304/SCM415-19L:1100℃-5min→WQ

た金属間化合物)が観察できる。

900°C-5min 加熱(**Fig.31**) することにより、 この SUS/SUS 界面の介在物は消失する傾向に あり、SUS304内におけるボロンの濃度は均質化 する傾向を示す。このことにより SUS/SUS の 密着性は向上するが、組織的回復(結晶粒径の粗 粒化、転位密度の減少など)により、強度は低下 すると考えられる。事実、引張強さは 1197MPa →755MPa に低下し、伸びは 3.6%→27%に増し た。1000°C-5min 加熱(Fig.31)では、SUS304 粒内においてボロンの均質化傾向がさらに顕著 になる。引張強さが 900°C-5min 加熱より 755MPa→790Mpaと、わずかに高かった理由は、 この偏析の程度に依存すると考えられる。

1100℃-5min 加熱(Fig.32)では、SUS304と SCM415 間の濃度勾配はなくなる傾向を示すが、 7 層界面の SUS 接合領域において顕著なほう化 物(矢印で表記)が認められるようになる。析出 物(ほう化物)は全体的に微細で、均一に観察さ れるようになるが粒界偏析と粒界析出も見られ るようになる。これは粒界析出ないしは粒内析出 していたほう化物が、1100℃の温度でマトリック スに再固溶したためと考えられる。

(3) SUS304/SCM415-3LH

SUS304/SCM415 (3 層)の N/A (冷延まま 材と 900~1100℃-5min 加熱後水冷したときの ATE 像を Fig.33~Fig.36 に示す。N/A (Fig.33) では SUS304/SCM415 界面に、19 層積層材と 同じようにボロンのバンド状粒界偏析が鮮明に 観察できた。また SUS304 および SCM415 にも 粒界偏析と、顕著な粒界析出および粒内析出が見 られた。引張強さは 1014MPa、伸びは 1.3%であ

Fig.33 SUS304/SCM415-3L:N/A

Fig.34 SUS304∕SCM415-3L : 900°C- 5min→WQ

Fig.35 SUS304/SCM415-3L:1000°C-5min→WQ

った。強度が強いのは SUS304/SCM415 界面へのボロンの偏析が寄与している可能性が高い。

900℃-5min 加熱(Fig.34)では、異相界面の 偏析は弱くなる。端部にある SUS304 の粒界偏析 は濃化する傾向を示した。これは SUS304/ SCM415 界面に偏析していたボロンが SUS304 側に均一拡散したためと考えられる。またボロン

Fig.36 SUS304/SCM415-3L:1100°C-5min→WQ

またボロン分布の粒界偏析から結晶粒径を計測 すると、SCM415 の方が SUS304 よりも大きい ことがわかる。

1000℃-5min 加熱(**Fig.35**)でも、SUS304/ SCM415 の界面は幅をもって観察できる。 SUS304 のγ粒径は、900℃加熱と比較すると粗 粒になっていることがわかる。またボロンの**粒界** 偏析に加えて粒界析出が多く見られる。

1100℃-5min 加熱(**Fig.36**)では、SUS304/ SCM415 界面の濃度勾配は消失する傾向を示す。 これに伴い、ボロンのマトリックスへの固溶が生 じ、SUS 側には**粒界析出、SCM415** 側には**粒内** 析出が顕著に見られるようになる。引張強さは 812MPa→764MPa に低下し、伸びは 24%→27% に増した。

5. 結論

- (1) 興味ある知見としては Ni シートを跨いで、 γ 粒界の一体化が観察できた。γ 粒の一体化に は Ni は関与しない。
- (2) #1013のN/A(冷延まま)材において、Ni シート中にほう化物(Ni₃CrB)のコントラスト が見られた。ほう化物が析出しなかったときの 引張強さは高かった。
- (3) SUS304/SCM415 界面にはボロンのバン ド状粒界偏析が鮮明に観察できた。引張強さが 高いときは異相界面へのボロンの偏析が寄与 していると考えられる。
- (4) ATE 法により、SUS/SUS 界面の密着性が判別できる可能性がある。900℃加熱によって SUS/SUS 界面の密着性は向上した。
- (5) 熱処理によって密着性が改善できたとして も組織的回復(結晶粒径の粗粒化、転位密度の 減少など)により強度は低下する。
- (6) 1100℃-5min 加熱により、SUS304 と SCM
 415間のボロンの濃度勾配はなくなる傾向を示し、引張強さが低下した。
- (7) ATE 法により、Table 3 に示したようにボロンの粒界偏析、粒界析出および粒内析出と引張強度の相関性が見いだされた。

鋼種 No.	熱処理	引張強 さ(MPa)	伸び(%)	異相界面偏析	粒界析出	粒内析出
	N/A	-	-	O(SUS/WT 界面)	×	$O(Ni), \Delta(SUS)$
1010	900°C-2min	964	20.9	O(SUS/WT 界面)	×	×
1013	1000°C-2min	847	26	O(SUS/WT 界面)	×	×
(SUS304/NI/	1000°C-30min	711.1	31	O(SUS/WT 界面)	×	Δ (Ni/SUS)
WT780C	1000°C-60min	686.7	35	O(SUS/WT 界面)	×	Δ (Ni/SUS)
	1000°C-120min	-	-	∆(SUS/WT 界面)	$O(SUS), \Delta(WT)$	O(SUS•WT)
	N/A	1197	3.6	O(SUS/415 界面)	\triangle (SUS•415)	O(SUS•415)
SUS304/SCM	900°C−5min	755	26.7	△(SUS/415 界面)	△(SUS•415)	O(SUS•415)
415-19LH	1000°C-5min	790	24.8	△(SUS/415 界面)	Δ (SUS•415)	O(SUS•415)
	1100°C-5min	-	-	×(SUS/415 界面)	∆(SUS•415)	O(SUS•415)
	N/A	1014	1.3	O(SUS/415 界面)	O(SUS•415)	O(SUS•415)
SUS304/SCM	900°C-5min	937.3	18.3	△(SUS/415 界面)	△(SUS•415)	O(SUS-415)
415-3LH	1000°C-5min	811.8	24.2	△(SUS/415 界面)	△(SUS•415)	O(SUS-415)
	1100°C-5min	763.5	27.1	×(SUS/415 界面)	△(SUS•415)	O(SUS-415)

Table 3 各積層材における引張特性とボロンの粒界偏析、粒界析出および粒内析出

 $\bigcirc: \texttt{strong} \quad \bigtriangleup: \texttt{weak} \quad \times : \texttt{very weak}$

研究3:12Cr 系耐熱鋳鋼の長時間クリープ破断 強度に及ぼす Co及びBの効果

1. はじめに

火力発電プラントの高効率化のため、超々臨界 圧プラントのさらなる高温高圧化の取組みがな され、高強度フェライト系耐熱鋼の開発、評価が 行われている⁴⁷。一般に Co はオーステナイト相 を安定化させ、 δ フェライトの生成を抑え、固溶 強化作用も有する。12Cr 鋼の組織因子は複雑で あり、W、Mo、Co が複合添加された場合の高温 強度に及ぼす各元素の役割は十分に解明されて いない。角屋ら⁹⁰は、12Cr 鋼モデル合金の析出挙 動に及ぼす Co 添加の効果を調べた結果、Co 添加 が Mo および W の固溶限を減少させ、Laves 相の 析出を加速することを報告している。しかし1万 時間を超える長時間クリープ破断試験における Co の強度向上効果は明らかでない。

Bは軽元素で検出が困難なことから、鋼中での Bの存在形態や影響について多数報告されている が、これらは鋳鍛鋼におけるBの挙動であり、耐 熱鋳鋼におけるBの効果、最適添加量については 明確にされていない。

本研究では 12Cr 系鋳鋼の長時間クリープ破断 強度に及ぼす Co および B の効果を明らかにする ことを目的とし、高温強度と微視組織に及ぼす Co と B の効果を調べた。

2. 実験方法

2.1 供試鋼および熱処理条件

供試鋼の基本組成は 0.12C-10.5Cr-0.4Mo-2.2 W-0.2V-0.06Nb-0.03N で#1 は 2.5Co-20ppmB、 #2 は<0.01Co-20ppm、#3 は 2.5Co-50ppmB で変 化させて、3 種を VIM で溶製した。Cr 当量は、 #1 が 4.9、#2 が 10.0、#3 が 5.0 であった。熱処 理は 1050℃にて 8 時間の焼きならしを行い、 575℃と 725℃にて各 8 時間で 2 回の焼戻しを行 った。これら丸棒からクリープ破断試験片を採取 した。

2.2 機械的性質

クリープ破断試験は、平行部直径 6mm、平行 部長さ 30mm の丸棒試験片を用い、650℃を中心 に 64~206MPa の範囲で実施した。

2.3 析出物の評価と組織観察

調質まま、およびクリープ破断材の平行部を供 試材として、透過電子顕微鏡(TEM)観察と析出 物の同定(EDS、XRD、EPMA)を行った。軽元 素 B の状態分析は、1ppm 以下の添加量でも検出 可能な中性子利用の Alpha-particle Track Etching Method (ATE 法)¹⁵⁻¹⁶⁾を用いた。

結果および考察

3.1 結晶粒径とクリープ破断強度

旧オーステナイト粒径は粒度番号 0~1 で、鋼 種間の大きな差は認められなかった。Co を 2.5% 添加した#1 および#3 はマルテンサイト単相組織 が得られているが、Co 無添加で Cr 当量の大きい #2 は球形の δ フェライトがわずかに認められた。 δ フェライトの面積率は約 1%であった。Co 添加 による δ フェライト生成の抑制効果が確認できた。 B 添加量の相違による組織の違いは光顕レベルで は認められなかった。

Fig.37 L.M.P.法によるクリープ破断強度

クリープ破断試験の結果を Fig.37 に示す。横軸 はLarson-Miller パラメータ(L.M.P.)を C=25 で整理した。低温短時間側(L.M.P.=24~25.5) においては Co を 2.5%添加した#1、#3 はほぼ同 等のクリープ破断強度を示しているが、Co 無添 加の#2では、低いクリープ破断強度を示す。600℃ 短時間では2.5%Co添加鋼がクリープ破断強度に 優れている。一方、高温長時間側(L.M.P.=25.5 ~27) においては Co 添加鋼の傾きが大きく、ク リープ破断強度の急激な低下が観察されるが、Co 無添加鋼では傾きの変化が小さく比較的滑らか な曲線である。試験温度 650℃の場合を例にとる と、応力 206MPa において#1、#3 は#2 の約 5~ 6倍の破断時間に対し、応力 79MPa においては #2 が#1、#3 の約 1.5 倍程度の破断時間を示す。 クリープ破断強度の逆転は 650℃、約 7000h 相当

の試験条件で認められる。これらの結果から、長時間試験における組織安定性に Coが大きく影響 していることが予想される。

一方、#3 は高温長時間において#1 よりわずか に高い破断強度を示す傾向にあり、B 添加量によ る差異がわずかに認められた。

3.2 TEM 薄膜組織観察

調質まま、およびクリープ破断材平行部の薄膜 による TEM 組織観察結果を Fig.38 に示す。調質 まま材の#1(a)、#2(d)、#3(h)はいずれもラスマル テンサイト組織で、比較的高い密度の転位組織を 有する。またラス、パケット、ブロックから成り、 旧ッ粒界には多くの析出物が認められた。Coお よび B 添加量の違いによる組織の大きな差異は 認められなかった。応力 206MPa では、2.5%Co 添加の#1(b)と#3(i)を比べると、いずれも破断 時間 30h 未満の短時間でありながら、転位密度の 減少、ラス幅の拡張および局所的な組織の回復、 さらに析出物の顕著な粗大化など、急激な組織変 化が観察された。Co 無添加の#2(e)では、破断時 間が短いものの、ラス組織、微細な析出物が保た れていることが観察された。

応力 79MPa では、#1(c)、#3(j) において、ラ ス構造がほぼ消失し、等軸のサブグレイン構造を 示している。一方、#2(f)は転位組織、ラス構造が 残存しており、組織回復は局所的なサブグレイン 化に留まっている。

応力 64MPa の#2(g)では、比較的高密度の転位 とラス構造が観察でき、Co 無添加鋼は優れた組 織安定性を示した。

3.3 ATE 観察

ATE 像の観察結果を Fig.39 に示す。この写真 は「硝酸セルロースフィルムに残されたα線粒子 の痕跡」を光学顕微鏡観察したものである。黒い コントラストが B の存在箇所を示し、黒点は B 化合物、マトリクスの微細なコントラストは固溶 状態の B を示している。ATE 像ごとの照射条件 およびエッチング条件を揃えているため、黒点の 大きさについて相対比較は可能であるが、絶対値 の評価ではないことに注意が必要である。

Fig.39(a)、(e)、(i)に示したように、 調質まま 材に観察された黒いコントラストは大きく異な っていた。Fig.39 (a)および(e)はほぼ同程度の B 添加量であり黒点がいずれも存在するが、(e)はわ ずかに黒点の数が少なく、δフェライトに対応し ていると思われるコントラスト(白抜きの島状組 織)が観察された。50ppmB添加の(i)は黒点の数 物がより多く形成されていると判断された。

#1 は、試験時間の増加に伴って黒点の大きさが 大きくなり、Fig.37(b)、(c)では、数密度はわずか に減少する傾向を示した。数密度の減少は、析出 物に B が濃化した粒子数の減少に対応しており、 析出物の凝集・粗大化を表している。(d)では数密 度はさらに減少し、凝集が進んでいると考えられ る。

#2 は、#1 と同様に、試験時間の増加に伴って 黒点の数密度が減少したと考えられるが、 Fig.39(f)では(d)と同様にコントラストが弱い。 Fig.39(g)および(h)では旧オーステナイト粒界 と思われる箇所への偏析が観察された。Fig.39(j) に一例として、線上の黒いコントラストを矢印で 示した。Fig.39(g)および(h)はδフェライトに 対応していると思われるコントラストも観察さ れるが、δフェライトとそのマトリクスとの界面 は、熱処理まま(e)、および破断材(g)(h)において、 大きさ、形状に大きな変化は認められなかった。

#3 は、#1 および#2 と異なり、試験時間の増加 に伴う数密度の変化はほとんど認められなかっ た。旧オーステナイト粒界への B 偏析は、 Fig.39(j) において明瞭に観察されており、比較 的早い時間に偏析したと考えられる。

#1、#2 は、若干のコントラストと 8 フェライト の有無に違いがあるものの、ATE 像から B 分布 に大きな違いは見られなかった。一方、#3 では B 添加量が多いことに起因したと思われる B 析出 物のコントラストが、より強く観察された。

3.4 元素固溶量および Laves 相の安定性

2.5%Co 添加鋼(#1)、Co 無添加鋼(#2)の熱処理 まま、およびクリープ破断材から抽出した残渣を 用いて、EPMA 解析により未溶解析出物中に含ま れる W および Mo の比率を求めた結果を Fig.40 に示す。添加量に対応して、析出物中には W が 多く含まれた。時間の増加に伴って Mo 比率はわ ずかに単調増加するが、W 比率は 5000h 前後で 減少し、長時間側で大きな変化は認められなかっ た。W、Mo 共に Laves 相および M₂₃C₆の構成元 素であるが、W は主に Laves 相、Mo は主に M₂₃C₆ に含まれ、W の減少は M₂₃C₆ および Z 相の増加

Fig.38 #1~#3 における 650℃クリープ破断強度と TEM 像

Fig.39 #1~#3 における 650℃クリープ破断強度と ATE 像

 Fig.40
 クリープ破断時間と EPMA による

 未溶解抽出残渣中のWとMo量の変化

に対応した相対的な減少と考えられる。いずれの 破断時間においても#1の析出物中のWおよび Moは#2よりも多く、2.5%Co添加は析出物の生 成を促進していることが明らかとなった。EDS 分析および EPMA 分析によりクリープ破断材の 析出物、とくに Laves 相中へのCoの濃化、およ び2.5%Co添加鋼のLaves 相生成比率が高いこと を明らかにした。

本研究の2.5%Co添加鋼の長時間試験における 組織安定性の低下は、CoがLaves相の生成を促 進し、マトリクスの固溶W量を減少させること に起因する。合金設計は引張特性、衝撃特性に代 表される短時間特性と、クリープ破断強度に代表 される長時間特性を考慮する必要があり、最適な Co添加量を求めることは今後の課題である。

4. 結言

12Cr 系鋳鋼の長時間クリープ破断強度に及ぼ す Co および B の効果を明らかにすることを目的 とし、長時間クリープ試験材の組織観察を行い、 高温強度と微視組織に及ぼす Co と B の効果を調 べ、以下の結論を得た。

- (1) Co は δ フェライトの生成抑制効果があり、 2.5%Co添加鋼では δ フェライトの生成が認めら れず、良好な引張、衝撃特性が得られた。
- (2) クリープ破断試験の結果、低温短時間側で は Co 添加鋼の強度が優れるが、650℃、約 7000h 相当を超える高温長時間側では強度が逆転し、 Co 無添加鋼の強度が高かった。
- (3) クリープ破断強度に及ぼす B の効果は、低 温短時間側では 20ppmB 鋼と 50ppmB 鋼の明確

- な差異は認められなかったが、高温長時間側では 50ppmB 鋼が強度の高い傾向を示した。
- (4) TEM 観察の結果、2.5%Coの添加は、組織の回復を速めた。
- (5) B 添加量によって析出物の凝集・粗大化傾向は異なり、長時間側では 50ppmB 添加が有利であった。ATE 観察の結果、B は M22C6 中により多く固溶しており、M23(CB)6 を形成すると考えられる。
- (7) Co 添加は Laves 相の相安定性を向上し、 Laves 相の固溶温度上昇による析出駆動力の増 大が生成促進要因の一つと考えられる。

参考文献

- K.Asakura, M.Hirasaka and H.Tamegai : Electron microscope sample making technique for leading from failure to success, (2007) ,p.199, AGNE Shofu-Sya.
- 2) K.Asakura, T.Koseki, M.Kawate and Ishimoto: Tetsu-to-Hagane, 93, (2007), pp. 634-641
- 3) T.M.Williams, A.M.Stoneham and D.R. Harries : Metal Science, 10 (1976), 1
- 1) R.Kaneko, S.Nakamura, Y.Watanabe, Y.Tanaka and T.Fujita: Therm. Nucl. Power, 46(1995), 968
- 2) M.Arai, H.Doi, Y.Fukui, T.Azuma and T.Fujita: Materials for Advanced Power Engineering, Julich (2002), III-1269
- 3) M.Arai, H.Doi, Y,Fukui, T.Azuma and T.Fujita: 15th International Forge Master Meeting, Tokyo (2003), 261
- A) M. Staubli, R.Hanus, T.Weber, K.H.Mayer and T.-U.Kern: Materials for Advanced Power Engineering, Julich (2006), P.II-855
- 8) Y.Kadoya and E.Shimizu: Tetsu-to-Hagane, 88(2002),2263
- 9) K.Asakura, K.Shibata, H.Sawahata, M.Kawate and S.Harasawa: Tetsu-to-Hagane, 89(2003),369

Ⅲ. 結果の公表

- T.Sato, K.Tamura, K.Asakura and T.Fijita: Correlation of reverse-S type creep rupture behavior with strengthening mechanism of 9%Cr-W-Co heat resistant steel for USC boiler components, CAMP-ISIJ, 19, 565, (2006)
- 2) C. Nagasaki, K. Asakura, T. Koseki and K. Shibata : Effects of boron and tin on surface

hot shortness due to copper in low carbon steel, CAMP-ISIJ, 19, 501, (2006)

- T.Sato, K.Tamura, K.Asakura and T.Fujita: Long term creep rupture strength and quantitative analysis of precipitates during creep of 9%Cr-W-Co heat resistant steel for USC boiler components, CAMP-ISIJ, 19, 1173, (2006)
- 4) K.Asakura, T.Koseki, T.Fujita and T.Sato: Effects of Al and Ni on long term creep rupture strength of high Cr heat resistant steels and strengthening mechanisms, Report of the 123rd Committee on Heat-Resisting Materials and Alloys Japan Society for the Promotion of Science. 47,3 (2006),329-344
- 5) K.Asakura, T.Koseki, T.Fujita and T.Sato: Effects of Al and Ni on long term creep rupture strength of high Cr heat resistant steels and strengthening mechanisms, CAMP-ISIJ, 20, 549(2007)
- 6) K.Asakura, T.Koseki, M.Kawate and M. Ishimoto: Establishment and problem of the Observing System for Boron in Steels by Alpha-particle Track Etching Method Using Pneumatic Tube of JRR-3 and JRR-4. Tetsu-to-Hagane, 93(2007) 634-641
- K.Asakura and T.Koseki: Establishment and problem of the observing system for Boron in steels by Alpha-particle track etching method using pneumatic tube of JAEA, CAMP-ISIJ, 93(2007)
- 8) K.Asakura, T.Koseki, T.Fujita, Y.Kodama, K.Tamura and T.Sato: 9-10Cr Effects of very small amount of Ni and Al on long term creep rupture strength of 9-10Cr heat resistant steels, CAMP-ISIJ, 21, 580,(2008)
- 9) M.Arai, K.Kawanaka, H.Doi, K.Asakura and T.Koseki: Effect of cobalt and boron on long term creep rupture strength of 12Cr cast steels, CAMP-ISIJ,22,571,(2009)
- 10) M.Arai, K.Kawanaka, H.Doi, K.Asakura and T.Koseki: Effect of nickel, carbon and nitrogen on long term creep rupture strength of 10Cr steels containing boron, CAMP-ISIJ, 22, 1367,(2009)
- 11) K.Asakura, T.Koseki, M.Arai and T.Sato: Effects of boron content variation and heat treatment on creep rupture strength of ferritic heat resistant steels : CAMP-ISIJ, 23,1151 (2010)
- 12) M.Arai, H.Doi, K.Asakura and T.Koseki: Effect of nickel and aluminum on long term creep rupture strength of 10Cr heat esistant steels、CAMP-ISIJ, 23, 1152 (2010)
- 13) M.Arai, K.Asakura, H.Doi, K.Kawanaka, T.Koseki and T.Horiuchi: Effect of cobalt and boron on long-term creep rupture

strength of 12Cr cast steels, Tetsu-to-Hagane,96,10 (2010) 620-628

14) K.Asakura, T.Koseki, T.Sato, M.Arai, H.Tamura and T.Fujita: Effect of chromium, aluminum and nickel on microstructure and reverse-S type creep rupture strength of Cr ferritic heat resisting steels, Tetsu-to-Hagane, 96,11 (2010) 665-672

IV. 今後の方針

原子力機構炉(医療用および気送管設備)を用 いて ATE 法の手法を確立した後、今期以降は応 用研究について遂行した。今後は、

- (1) 熱間圧延及び冷間圧延によって作製した複 層鋼板を用いて、複層界面のミクロ組織とボロ ンの偏析及び析出(ボロンの分布状態観察)と いう視点から、複層化の界面形成に関する圧延 プロセスの諸条件の影響、圧延後の熱処理の影 響などについて調査する。
- (2) 継続研究になっている溶接構造用鋼の基本 成分に C, Nb, B を変化させ、真空溶解にて試験 片を作製する。その後、溶接熱影響部相当の熱 サイクルを付与し acicular フェライトを含む 溶接部組織を再現し、組織観察を行うとともに、 ボロンの存在位置の調査研究を行う。
- (3) B の偏析挙動に及ぼす Mo の効果や粒内析出 を含めたボライドの析出挙動に及ぼす Mo の影 響を詳しく調べることにより、鋼中の B 偏析・ 析出挙動について解明する。
- (4)非鉄金属分野においてボロンの可視化研究は 行われていない。そこでボロン量を変化させた Cu-B 合金を溶解し、強度と熱処理の関係(空 冷、炉冷材など)を調べる。
- (5) 高強度フェライト系耐熱鋼における B の影 響を詳細に解析する。とくに種々の熱処理にお ける B 分布と、Laves 相に B が濃化するのかな どについて調査研究を進める。

謝辞:

JRR-3 および JRR-4 中性子照射に関しては東 京大学大学院原子力専攻の石本光憲氏の多大な る協力によった。また高強度フェライト系耐熱鋼 の試料とデータの一部は日立製作所㈱日立研究 所、新井将彦氏(共同研究)の好意により掲載し た。ここに感謝の意を表します。

This is a blank page.

おわりに

本報告書は、研究炉(JRR-3、JRR-4)を利用した利用者の協力を基に、研究炉の成果を 提出して頂き、研究炉利用課で編集したものであります。この成果を公表する事で、研究 炉の今後の有効利用並びに利用拡大に役立つ事を期待します。

編集委員

編集委員メンバー

笹島	文雄	(研究炉利用課長)
高橋	広幸	(研究炉利用課)
大和田]博之	(研究炉利用課)

謝 辞

本報告書の発刊にあたり、多くの皆様から多大なご協力を頂きました。

原稿を提出して頂いた利用者の皆様のご協力に感謝するとともに、今後も研究炉が有効 に利用され、種々の研究がさらに進展されることを期待します。

編集に際し、ご協力頂いた、研究炉加速器管理部長 丸尾毅氏、研究炉加速器管理部 JRR-4管理課課長 木名瀬政美氏に深く感謝致します。 付 録

Appendixes

This is a blank page.

付 録

原科研研究炉の利用設備一覧

JRR-3
 1)実験設備

			st t.	
実験孔	実		装	道
1 G	局分解能粉末甲性子	回打装置(H	RPD)	
I G - A	生体局分子用屮性子 生生 = 0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	解析装置(B 細灯は開(B	$\begin{bmatrix} X - \Pi \end{bmatrix}$	
I G – B	生体局分子用屮性子	解 析 装 直 (B	$1 \times -IV$	
2 G	二軸型甲性子分光器	(TAS - I)		
3 G	甲性子トホクフノイ	及び精密光字	「実験装置(I	PNO
4 G	汎用二軸型甲性子分	光器(GPT	AS)	
5 G	偏極中性子散乱装直	(PONIA	.)	
6 G	東北大学中性士散乱	分光器(10	PAN)	
7 R	中性ナフンオクフノ	イ装直(IN	RF)	
1 1 - 1	中性于偏極回折装直	(HQR)		
1 1 - 2	単結晶屮性于凹折装	直(KSD)		
1 1 - 3	材木中性ナ四折装直	(KPD)		
1 1 - 4 - 1	即発力ンマ緑分析装	直(PGA) 転出票(MD	(\mathbf{A}, \mathbf{A})	
1 1 - 4 - 2	多里即発ガンマ禄分	竹袋直(M P 変乱(エのF	(GA)	
1 1 - 4 - 3	IOF型甲性ナ反射)	
1 1 - 4 - 4	中性ナノリエ凹折装)	
1 1 - 4 - 5	中性ナハーク朋塚奉	啶側止表直 回垢壮墨 (D		
1 2 - 1	次留心刀側疋甲性于 山州了4 軸回垢壮墨	凹灯 装直(K	E S A	
1 2 - 2 T 2 2	中住丁4 轴回灯表电 夕日的尚A 劫由州了	(FONDE ビー / ピート		
1 2 - 3 T 2 - 4	多日的半巴然中住于	モームホード ユム来聖 (エ	(MUSAS	5 П І)
12 - 4	同刀件化一种空中化	丁刀儿硷(1 三動刑由歴之	AS-2) 公火翌 (ロロ	- D)
$C_{1} = 1$ $C_{1} = 2$	同二イルイニカ解肥	<u>一</u> 軸空中住丁 勘利壮罟(s		Ξ Κ)
$C_{1} = 2$	一次九位直例足小内 		ANS 0	
C = 1	心向力 解 能 役 力 散 乱 必 由 性 子 勤 利 宇 騒 デ	表直(ULS バイス開発壮	/ :罟(ITAS	5)
$C_{2} = 2$	间 <u>一</u> [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	一个册元表 一一日家計 (S)
$C_2 = 2$ $C_2 = 3 = 1$	同Q 原域 / 心 十 圧 」 由 性 子 ス ピ ン エ フ ー	及初半前(C 分米哭(NS	F))
C 2 - 3 - 2 - 1	多重即発ガンマ線分	方元福(N S 标生置(M P	GA)	
C = 2 = 3 = 2 = 2	シェロルスシ、 林力 即発ガンマ線分析生	置 (PGA)	011)	
$C_2 = 3 = 3 = 1$	冷中性子ラジオグラ	$Z \neq (CNR)$	F)	
C = 2 = 3 = 3 = 2	パルス中性子機器開	≫斗(CH 発生置(CH	(\mathbf{OP})	
C = 2 = 3 = 3 = 3 C = 2 = 3 = 3 = 3	TOF型中性子反射	記設置(C H 率計(T O F)	
C 2 - 3 - 3 - 4	中性子ラウエ回折装	置(LAUE)	/	
$C_{3} = 1 = 1$	高分解能パルス冷中	世(1169日) 性子分光器(AGNES)	
C 3 - 1 - 2 - 1	中性子光学システム	評価装置(N	(OP)	
C 3 - 1 - 2 - 2	多層膜中性子干涉計	/反射率計((MINE)	
C 3 - 2	中性子小角散乱装置	(SANS-	J)	
			• /	
T I = 1 $T 1 = 2$ $T 1 = 3$ $T 1 = 4 = 1$ $T 1 = 4 = 2$ $T 1 = 4 = 3$ $T 1 = 4 = 3$ $T 1 = 4 = 4$ $T 1 = 4 = 5$ $T 2 = 1$ $T 2 = 2$ $T 2 = 3$ $T 2 = 4$ $C 1 = 1$ $C 1 = 2$ $C 1 = 3$ $C 2 = 1$ $C 2 = 3$ $C 3 = 3$ $C 2 = 3$ $C 3 = 1$ $C 3 = 1 = 2$ $C 3 = 2$	- 中単粉即多T中中残中多高高二超冷高中多即冷パT中高中多中子、扁中ガ即子子に子的解ネ元分性領子即ガ性スF子解子膜子、扁中性ン発型ラベカ4単能ル位解子域ス発ン子中型ラ能光中小グを極性子マガ中ウー測軸色三ギ置能散対ピガマラ性中ウパ学性角、折回折分マ子回崩中折中型分定方実中エマ分オ機子回スス干乱、折回折袋板反折壊性装性中解小散験性コ線析グ器反折冷テ渉装	「(置(置析率置礎回(ビ子三散装バ反分析置フ発率置性評/((4日)、「「()」」」」」」(2日)、「「」」(2日)、「「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」」(2日)、「」)(2日)、「」」(2日)、「」)、「」)(2日)、「」)、「」)(2日)、「」)、「」)、「」」(2日)、「」)、「」)、「」)、「」」(2日)、「」)、「」」(2日)、「」」、「」、」、「」、」、「」、」、「」、」、「」、」、「」、」、「」、	GA)) ESA) R) (MUSAS AS-2) 分光器(HI ANS-U)) 置(LTAS CUIREN E) GA) F) (OP)) (AGNES) OP) (MINE) J)	S H I) E R) S)

2) 照射設備

水	力	照	射	設	備	HR-1,2
気	送	照	射	設	備	PN-1,2
放身	村化会	分析	用照	射部	於備	P N - 3
均	_	照	射	設	備	S I – 1
旦	転	照	射	設	備	D R – 1
垂	直	照	射	設	備	$VT - 1$, $RG - 1 \sim 4$ $BR - 1 \sim 4$, $SH - 1$

- 2. J R R 4
 - 1) 実験設備

プール
中性子ビーム設備
散 乱 実 験 設 備
冷却水循環ループ
医療照射設備(BNCT)
即発ガンマ線分析装置

2) 照射設備

	Tパイプ(水力)
節目四計答	Sパイプ
間汤照外同	Dパイプ
	Nパイプ
気送管照射設備	ΡN

表 1. SI 基本単位						
甘大昌	SI 基本ì	単位				
盔半里	名称	記号				
長さ	メートル	m				
質 量	キログラム	kg				
時 間	秒	s				
電 流	アンペア	А				
熱力学温度	ケルビン	Κ				
物質量	モル	mol				
光度	カンデラ	cd				

表2. 基本甲位を用	いて表されるSI組立単位	立の例			
和辛雪	SI 基本単位				
和立里	名称	記号			
面 積平	方メートル	m^2			
体 積立	法メートル	m^3			
速さ,速度メ	ートル毎秒	m/s			
加速度メ	ートル毎秒毎秒	m/s^2			
波 数每	メートル	m ⁻¹			
密度,質量密度キ	ログラム毎立方メートル	kg/m ³			
面積密度キ	ログラム毎平方メートル	kg/m ²			
比 体 積立	方メートル毎キログラム	m ³ /kg			
電流密度ア	ンペア毎平方メートル	A/m^2			
磁界の強さア	ンペア毎メートル	A/m			
量 濃 度 ^(a) , 濃 度 モ	ル毎立方メートル	mol/m ³			
質量濃度キ	ログラム毎立法メートル	kg/m ³			
輝 度力	ンデラ毎平方メートル	cd/m^2			
屈 折 率 ^(b) (数字の) 1	1			
比透磁率(b)	数字の) 1	1			
(a) 量濃度 (amount concentra	ation)は臨床化学の分野では	物質濃度			
(substance concentration) Lt. FIFTI Z					

(substance concentration)ともよばれる。
 (b)これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 租立单位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
亚	5.37 v (b)	red	1 (b)	m/m
	() / / / / / / (b)	(c)	1 1 (b)	2/ 2
		sr II-	1	m m -1
同 仮 多		пг		S .
カ	ニュートン	N		m kg s ⁻²
E 力 , 応 力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{2} A^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量 比エネルギー分与				
カーマ	グレイ	Gy	J/kg	m ² s ²
線量当量,周辺線量当量,方向	2 2 2 1 (g)	C	T/la a	2 -2
性線量当量,個人線量当量		SV	J/Kg	ms
酸素活性	カタール	kat		s ⁻¹ mol

酸素活性(カタール) kat [s¹ mol]
 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや ュヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (a)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)へルツは周崩現象についてのみ、ペシレルは抜焼性核種の統計的過程についてのみ使用される。
 (a)セルシウス度はケルビンの特別な名称で、セルシウス温度度を表すために使用される。
 (d)やレシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (d)かけ性核種の放射能(activity referred to a radionuclide) は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205) についてはCIPM勧告2 (CI-2002) を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	[組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³
熱容量,エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	「クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁 率	ペンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酸素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ e ⁻¹ mol

表 5. SI 接頭語							
乗数	接頭語	記号	乗数	接頭語	記号		
10^{24}	э 9	Y	10 ⁻¹	デシ	d		
10^{21}	ゼタ	Z	10 ⁻²	センチ	с		
10^{18}	エクサ	E	10 ⁻³	ミリ	m		
10^{15}	ペタ	Р	10 ⁻⁶	マイクロ	μ		
10^{12}	テラ	Т	10 ⁻⁹	ナノ	n		
10^{9}	ギガ	G	10^{-12}	ピコ	р		
10^{6}	メガ	M	10^{-15}	フェムト	f		
10^{3}	+ 1	k	10 ⁻¹⁸	アト	а		
10^{2}	ヘクト	h	10^{-21}	ゼプト	z		
10^{1}	デカ	da	10 ⁻²⁴	ヨクト	v		

表6.SIに属さないが、SIと併用される単位				
名称	記号	SI 単位による値		
分	min	1 min=60s		
時	h	1h =60 min=3600 s		
日	d	1 d=24 h=86 400 s		
度	٥	1°=(п/180) rad		
分	,	1'=(1/60)°=(п/10800) rad		
秒	"	1"=(1/60)'=(п/648000) rad		
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²		
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³		
トン	t	$1t=10^{3}$ kg		

表7. SIに属さないが、SIと併用される単位で、SI単位で

衣される剱値が美験的に待られるもの					
名称言				記号	SI 単位で表される数値
電	子 >	ボル	ŀ	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J
ダ	N	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg
統-	一原子	質量単	单位	u	1u=1 Da
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m

表8.SIに属さないが、SIと併用されるその他の単位

	名称		記号	SI 単位で表される数値
バ	-	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa
オン	グストロ・	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海		里	М	1 M=1852m
バ	-	ン	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s
ネ	-	パ	Np	CI単位しの粉値的な間接け
ベ		N	В	対数量の定義に依存。
デ	ジベ	ル	dB -	

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値		
エルグ	erg	1 erg=10 ⁻⁷ J		
ダイン	dyn	1 dyn=10 ⁻⁵ N		
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s		
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{-1} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$		
スチルブ	$^{\mathrm{sb}}$	$1 \text{ sb} = 1 \text{ cd } \text{ cm}^{\cdot 2} = 10^4 \text{ cd } \text{ m}^{\cdot 2}$		
フォト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx		
ガ ル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²		
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$		
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$		
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ^{·1}		
(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ≦ 」				

は対応関係を示すものである。

		表	(10.	SIに 尾	禹さないその他の単位の例
	名称			記号	SI 単位で表される数値
キ	ユ	IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq
$\scriptstyle u$	ン	トゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ			K	rad	1 rad=1cGy=10 ⁻² Gy
$\scriptstyle u$			ム	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		\sim	7	γ	1 γ =1 nT=10-9T
フ	I.	N	"		1フェルミ=1 fm=10-15m
メー	-トル	系カラ	ット		1メートル系カラット = 200 mg = 2×10-4kg
ŀ			ル	Torr	1 Torr = (101 325/760) Pa
標	進	大気	圧	atm	1 atm = 101 325 Pa
力	П	IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)
3	カ	17	~		$1 = 1 = 10^{-6}$ m

この印刷物は再生紙を使用しています