Utilization facilities of JRR-3

View of the reactor room

Experiments in the neutron activation analysis laboratory

Neutron beam experimental apparatuses in the beam hall

JRR-3 irradiation capsules

Utilization facilities of JRR-3

	Equipment	name	Installation place	Purposes
VT-1	Vertical irradiation facility		Reactor core	Irradiation test, RI production
RG-1~4	Vertical irradiation facility		Reactor core	Irradiation test, RI production
BR-1~4	Vertical irradiation facility		Reactor core	Irradiation test, RI production
HR-1、2	Hydraulic irradiation facility		Heavy water tank	RI production, activation analysis
PN-1、2	Pneumatic irradiation facility		Heavy water tank	RI production, activation analysis
PN-3	Irradiation facility for activation analysis		Heavy water tank	Activation analysis
SH-1	Vertical irradiation facility		Heavy water tank	Irradiation test, RI production
DR-1	Rotating irradiation facility		Heavy water tank	Rotating irradiation
SI-1	Uniform irradiation facility		Heavy water tank	Production of silicon semiconductor
Installation	name of Instruments			
	HRPD	High Recolution Dowder Diffractomator		
16-4	BIX-3	Thermal Neutron Diffractometer for Biological Crystallography (OST*)		
26	TAS-1			
36	PNO	Apparatus for Precise Neutron Ontics and Neutron Diffraction Topography		
4G	GPTAS	Triple-Avis Spectrometer (University of Tokyo)		
56		Polarized Neutron Triple-Axis Spectrometer (University of Tokyo)		
66	TOPAN	Toboku-University Polarization Analysis Neutron Spectrometer (Toboku University)		
78	TNRF	Thermal Neutron Badiography Eacility		
T1-1	HQB	High Q-Besolution Triple-Axis Spectrometer (University of Tokyo)		
T1-2	AKANE	Advanced Kinken Neutron Spectrometer (Tohoku University)		
T1-3	HEBMES	Kinken Powder Diffractometer for High Efficiency and High Resolution Measurements (Tohoku University)		
T1-4-1	PGA	Prompt Gamma-ray Analysis System		
T2-1	RESA	Diffractometer for Residual Stress Analysis		
T2-2	FONDER	Four-Circle Off-Center-Type Neutron Diffractometer (University of Tokyo)		
T2-3-1	MUSASI	Multi-Purpose Thermal Neutron Application and Science		
T2-4	TAS-2	Triple-Axis Spectrometer		
C1-1	HER	High E-Resolution Triple-Axis Spectrometer (University of Tokyo)		
C1-2	SANS-U	Small-Angle Neutron Scattering Instrument (University of Tokyo)		
C1-3	BIX-4	Cold Neutron Diffractometer for Biological Crystallography(QST*)		
C2-1	LTAS	Low energy Triple-Axis Spectrometer		
C2-2	SUIREN	Apparatus for Surface and Interface Investigations with Reflection of Neutrons		
C2-3-1	NSE	Neutron Spin Echo Spectrometer (University of Tokyo)		
C2-3-3-1	CNRF	Cold Neutron Radiography Facility		
C2-3-3-2	CHOP	(Test Port with Chopper)		
C3-1-1	AGNES	Angle Focusing Cold Neutron Spectrometer (University of Tokyo)		
C3-1-2-1	NOP	Apparatus for Neutron Optics		
C3-1-2-2	MINE	Multilayer Interferometer for Neutrons (Kyoto University)		
C3-2	SANS-1	Small-Angle Neutron Scattering Instrument		

* QST: National Institutes for Quantum and Radiological Science and Technology

Specifications of fuel elements

The reactor core is compose of 26 standard fuel elements, control rods with follower fuel, be ryllium reflectors, and vertica irradiation holes.

- Standard fuel element
- Control rod with follower fue
- Vertical irradiation hole Beryllium reflector

Department of Research Reactor and Tandem Accelerator, Nuclear Science Research Institute, Japan Atomic Energy Agency TEL (+81)-29-282-5588 FAX (+81)-29-282-5258

ed 6		Standard fuel element	Follower fuel element	
al	Enrichment of U-235	Approx. 20wt%	Approx. 20wt%	
	Fuel core material	Uranium-Silicon dispersion alloy (U_3Si_2AI)		
el	Cladding material	Aluminum alloy		
	Number of fuel plate	21 plates/element	17 plates/element	

Japan Reseach Reactor No.3

JRR-3 achieved the first criticality in 1962 as the first research reactor constructed with the homegrown technology and had been utilized in a lot of researches from the dawn of nuclear research and industry. In 1990, JRR-3 was modified for upgrade and resumed its operation as a high performance and multi purpose research reactor with thermal power of 20MW.

JRR-3 has several utilization facilities for neutron beam experiments,

irradiation tests for nuclear fuel and material and production of RI.Cold neutron (very low energy neutron) beams are available and utilized for clarification of life phenomena by analyzing structure of polymer molecules, for example.

Specifications of JRR-3					
Purpose	Beam experiments, Irradiation tests of fuels and materials, RI production, Activation analysis				
Туре	Light water moderated and cooled, pool type reactor with low-enriched uranium				
Maximum thermal power	20MW				
Maximum thermal neutron flux	Approx. 3×10 ¹⁸ m ⁻² s ⁻¹				

Reactor core (center) and heavy water tank glowed pale-blue with Cherenkov radiation

August.2024

Utilization of JRR-3

JRR-3 has been utilized as a world-class high-performance research reactor for beam experiments (neutron radiography, neutron scattering experiments, prompt gamma-ray analysis) and neutron irradiation (RI production, neutron activation analysis), etc.

Contribution to the medical and industrial fields

Fuels and materials for light-water nuclear reactors, fast breeder reactors and fusion reactors are irradiated by neutrons After the irradiation, their conditions are examined in a hot laboratory, and the results are utilized for the development and research of future fast breeder reactors, fusion reactors, etc.

and materials

Irradiation capsules(back) and irradiation test pieces(front)

Materials irradiation test

Cooperation: Nissan Motor Co., Ltd. Neutron imaging with high material permeability is used as one of the nondestructive inspection methods, and it is effective for visualiza-

Oil movement inside the engine

tion of the inside of metals that are difficult to detect with X-ravs. On the other hand, since some light materials such as hydrogen and water will absorb and scatter neutrons, the movement of water and oil inside the product can be observed.

with neutrons

This is a method of measuring a change of crystal lattice plane distance (atomic arrangement) in the material and taking it as a change of strain, by making use of the neutron diffraction phenomenon. Because neutron has high material penetration property, the stress and strain in a metallic machine part can be measured without destruction nor contact. This method has been actively utilized to inspect the material strength design, integrity and reliability of industrial products (auto parts, power generation plant material, etc.)

analysis for light elements etc.

gamma-ray analysis (PGA)

PGA is a high sensitive method of analysis for trace elements which are included in a sample, by measuring prompt gamma-rays which are immediately emitted after neutron irradiation. This method is effective for various element analyses from light elements, such as hydrogen, boron and sulfur which are difficult to analyze in neutron activation analysis, to heavy elements. This method has been chiefly utilized to analyze environmental samples, meteorite, industrial materials and archaeology samples.